摘要
设K/Fq是亏格大于0的整体函数域,Kn:=KF(qn)是K上的n次常值域扩张.利用整体函数域zeta函数的整系数多项式的有理表达式,结合函数域常值域扩张的基本性质,对于满足特定条件的素数l,本文讨论了使得除子类群Pic0(Kn)的Sylow-l子群为非平凡群的常值域扩张Kn的存在性.
Let K/Fq be a global function field over finite field Fq with genus greater than O. Suppose that Kn := KFqn is a constant field extension of K with degree n. Together the rational expression for zeta function of K with the properties of constant field extensions, for a specified prime number l, we study in this paper the existence of constant field extension Kn/K with 1 dividing the order of group Pic0(Kn), which is the group of divisor classes of degree zero of function field Ks.
作者
赵正俊
孙广人
Zheng Jun ZHAO;Guang Ren SUN(School of Mathematics and Computational Science, Anqing 246133, P. R. China)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第4期585-590,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11601009)
安徽省自然科学基金资助项目(1608085QA04)
关键词
函数域
除子
类数
function fields
divisor
class number