摘要
本文考虑拟线性Schrodinger-Poisson方程{-△u+V(x)u+Φu-1/2△(u2)u=f(x,u),x∈R3,-△Φ=u^2,x∈R3,其中f是一个C1超线性且次临界的非线性项,V是正的有界位势.利用扰动方法,我们证明了该方程非平凡解、正解、负解、变号解的存在性.
We consider the following quasilinear SchrSdinger-Poisson system {-△u+V(x)u+Φu-1/2△(u2)u=f(x,u),x∈R3,-△Φ=u^2,x∈R3 where f is C1, superlinear and subcritical nonlinearity, V is bounded positive potential By using the method of perturbation, we prove the system has non-trivial solutions positive solutions, negative solutions and sign-changing solutions.
作者
王文波
李全清
Wen Bo WANG(Wuhan Institute of Physics and Mathematics, CAS, Wuhan 430071, P. R. China University of Chinese Academy of Sciences, Beijing 100049, P. R. China( Quan Qing( LI Department of Mathematics, Honghe University, Mengzi 661100, P. R. China)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第4期685-694,共10页
Acta Mathematica Sinica:Chinese Series
基金
云南省地方本科高校(部分)基础研究联合专项
红河学院科研基金博士专项项目(XJ17B11)