期刊文献+

椭圆曲线y^2=x(x-7)(x-23)的整数点 被引量:8

INTEGRAL POINTS ON THE ELLIPTIC CURVE y^2=x(x-7)(x-23)
原文传递
导出
摘要 运用初等数论方法,证明了:椭圆曲线y^2=x(x-7)(x-23)仅有整数点(x,y)=(0,0),(7,0),(23,0),(25,±30)和(207,±2760). Using elementary number theory method,it was proved that the elliptic curve y^2=x(x-7)(x-23) has only the integral points( x,y) =( 0,0),( 7,0),( 23,0),( 25,±30) and( 207,±2760).
作者 管训贵 GUAN Xungui(School of Mathematics and Physics , Taizhou University, Taizhou 225300, Chin)
出处 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2018年第1期75-80,共6页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 国家自然科学基金(11471144) 泰州学院教授基金(TZXY2016JBJJ001) 云南省教育厅科研课题(2014Y462)
关键词 椭圆曲线 整数点 丢番图方程 初等方法 Elliptic curve integral point Diophantine equation elementary method
  • 相关文献

参考文献2

二级参考文献12

  • 1邱德荣,张贤科.Mordell-Weil groups and Selmer groups of twin-prime elliptic curves[J].Science China Mathematics,2002,45(11):1372-1380. 被引量:11
  • 2Gary Walsh.A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4[J]. Archiv der Mathematik . 1999 (2)
  • 3Le M H.On the simultaneous Pell equation x2 - D1y2 = δ and z2 - D2y2 = δ. Advances in Mathematics . 2001
  • 4Ireland K,Rosen M.A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics . 1982
  • 5Cohn J E.The Diophantine equation y 2=Dx4+1. Math.Scand . 1978
  • 6Baker,A.The diophantine equationy2=ax3+bx2+cx+d. Journal of the London Mathematical Society . 1968
  • 7R. J. Stroeker,N. Tzanakis.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arithmetica . 1994
  • 8Petr,K.Sur l’eqution de Pell. C asopis Pest.Mat,Fys . 1927
  • 9Derong Qiu,Xianke Zhang.Elliptic curves and their torsion subgroups over number fields of type (2, 2, ..., 2)[J].Science in China Series A: Mathematics.2001(2)
  • 10Cassels,J. W. S.Lectures on Elliptic Curves, LMS Student Texts, Cambridge: Cambridge Univ[]..1991

共引文献14

同被引文献50

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部