摘要
基于热连轧生产过程实测数据,建立一种具有广义可加形式的热轧带钢变形抗力模型。首先,提出基于广义可加模型框架的热轧带钢变形抗力建模方法,包括变量预分析、模型设定、模型估计与结果分析等步骤;给出了估计模型各自变量平滑函数的back-fitting算法。接着,针对宝钢1880精轧机组进行建模实验,通过收集覆盖多钢种的带钢样本数据,建立了热轧带钢变形抗力的广义可加模型,采用三次光滑样条来估计各个模型自变量的单变量函数,获得了变形温度、变形程度、变形速率等因素对变形抗力的影响规律。实际建模实践表明,新模型的结构优于宝钢1880在线模型,具有计算精度高、适应钢种范围广等优点,可用于热连轧生产在线过程控制。
A deformation resistance model with generalized additive form for hot rolled strip was established based on the measured data of hot strip rolling process.Firstly,a deformation resistance modeling method for hot rolled strip was proposed under the framework of generalized additive models,including pre-analysis of variables,model setting,model estimation and result analysis;the back-fitting algorithm for the estimation of the univariate function of each independent variable was given.Then,the modeling experiment was carried out for Baosteel 1880 finishing mill,the generalized additive model for deformation resistance was established based on large number of strip sample data which covering many kinds of steel grades,the influence of strain temperature,strain and strain rate on deformation resistance was obtained.Practical calculation results show that the accuracy of new model is higher than that of the Baosteel online model.The new model has the advantages of high calculation precision and applicable to wide range of steel grades,and can be used in online process control of hot continuous rolling production.
作者
李维刚
冯宁
赵云涛
严保康
LI Wei-gang;FENG Ning;ZHAO Yun-tao;YAN Bao-kang(School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, H ubei, China;Engineering Research Center for Metallurgical Automation and Detecting Technology of Ministry Of Education, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China)
出处
《钢铁研究学报》
CAS
CSCD
北大核心
2018年第6期447-452,共6页
Journal of Iron and Steel Research
基金
国家自然科学基金资助项目(51774219)
东北大学轧制技术及连轧自动化国家重点实验室开放课题基金资助项目(2017RALKFKT004)
武汉市青年科技晨光计划资助项目(2016070204010099)
关键词
热轧带钢
变形抗力
预报
广义可加模型
hot-rolled strip
deformation resistance
prediction
generalized additive model