摘要
运用初等方法讨论了椭圆曲线y^2=x^3+14x-36上的整数点的问题,证明了该曲线仅有整数点(x,y)=(2,0),(106,±1 092).
Using of some known results of Pell equation and quadric Diophantine equation, with elementary methods we prove that the elliptic curve y^2 = x^3 + 14x - 36 has only integral points (x,y) = (2,0) , (106, + 1092) .
作者
崔保军
CUI Baojun(Department of Mathematics, Gansu Nnormal University for Nationalities, Hezuo 747000, Chin)
出处
《内蒙古农业大学学报(自然科学版)》
CAS
北大核心
2018年第3期90-93,共4页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
甘肃省高等学校科研项目(2016B111)
关键词
椭圆曲线
同余
整数点
Elliptic curve
congruence
integral point