期刊文献+

椭圆曲线y^2=x^3+14x-36的整数点 被引量:13

POINTS ON THE ELLIPTIC CURVE y^2= x^3+ 14x-36
原文传递
导出
摘要 运用初等方法讨论了椭圆曲线y^2=x^3+14x-36上的整数点的问题,证明了该曲线仅有整数点(x,y)=(2,0),(106,±1 092). Using of some known results of Pell equation and quadric Diophantine equation, with elementary methods we prove that the elliptic curve y^2 = x^3 + 14x - 36 has only integral points (x,y) = (2,0) , (106, + 1092) .
作者 崔保军 CUI Baojun(Department of Mathematics, Gansu Nnormal University for Nationalities, Hezuo 747000, Chin)
出处 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2018年第3期90-93,共4页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 甘肃省高等学校科研项目(2016B111)
关键词 椭圆曲线 同余 整数点 Elliptic curve congruence integral point
  • 相关文献

参考文献2

二级参考文献7

  • 1Silverman J. H., The Arithmetic of Elliptic Curves, New York: Springer Verlag, 1999.
  • 2Zhu H. L., Chen J. H., A note on two diophantine equation y^2 = nx(x^2 ± 1), Acta Mathematica Sinica, Chinese Series, 2007, 50(5): 1071-1074.
  • 3Zagier D., Large integral point on elliptic curves, Math Comp., 1987, 48(177): 425-536.
  • 4Zhu H. L., Chen J. H., Integral points on y^2=x^3 + 27x - 62, J. Math. Study, 2009, 42(2): 117-125.
  • 5Min S. H., Yah S. J., Elementary Number Theory, Bcijing: Higher Education Press, 2003, 163-166.
  • 6Walsh G., A note on a theorem of Ljunggren and the diophantine equations x^2 - kxy^2 + y^4 = 1 or 4, Arch. Math., 1999, 73(2): 119-125.
  • 7Walker D. T., On the diophantine equation mX^2 - nY^2=1, Amer, Math. Monthly, 1967, 74(6): 504-513.

共引文献45

同被引文献36

引证文献13

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部