期刊文献+

基于预测梯度的图像插值算法 被引量:17

Image Interpolation With Predicted Gradients
下载PDF
导出
摘要 提出一种新的非线性图像插值算法,称为基于预测梯度的图像插值(Image interpolation with predicted gradients,PGI).首先沿用现有的边缘对比度引导的图像插值(Contrast-guided image interpolation,CGI)算法思想对低分辨率图像中的边缘进行扩散处理,然后预测高分辨率图像中未知像素的性质,最后对边缘像素采用一维有方向的插值,对非边缘像素采用二维无方向的插值.与通常的非线性图像插值算法相比,新算法对图像边缘信息的理解更为完善.与CGI算法相比,由于梯度预测策略的使用,PGI算法能够更有效地确定未知像素的相关性质(是否为边缘像素,以及是边缘像素时其边缘方向).实验结果表明,PGI算法无论在视觉效果还是客观性测评指标方面均优于现有的图像插值算法.此外,在对彩色图像进行插值时,本文将通常的RGB颜色空间转化为Lab颜色空间,不仅减少了伪彩色的生成,而且降低了算法的时间复杂度. A new nonlinear image interpolation algorithm is proposed, referred to as image interpolation with predicted gradients(PGI). First, the idea of contrast-guided image interpolation(CGI) is employed to diffuse the edges in the lowresolution(LR) image. Then, unknown pixels in the high-resolution(HR) image are predicted. Finally, a 1-D directional filter is employed to process edge pixels while a 2-D directionless filter is used to interpolate non-edge pixels. Compared to the common nonlinear image interpolation algorithms, the new algorithm has a better interpretation of image edges.Compared to the CGI, the PGI can predict the property of unknown pixels more precisely(including whether an unknown pixel is an edge pixel or not, and its direction if it is). Experimental results show that PGI has a better performance than the existing algorithms, either with respect to visual effect or in terms of objective criteria. In addition to interpolate color images, the usual RGB space needs to be converted to the Lab space. As a result, pseudo-color can be suppressed and the computational complexity is reduced.
作者 陆志芳 钟宝江 LU Zhi-Fang;ZHONG Bao-Jiang(College of Computer Science and Technology, Soochow University, Suzhou 215006)
出处 《自动化学报》 EI CSCD 北大核心 2018年第6期1072-1085,共14页 Acta Automatica Sinica
基金 国家自然科学基金(61572341) 苏州大学"东吴学者计划"资助~~
关键词 图像插值 预测梯度 对比度 梯度 边缘 Image interpolation predicted gradients contrast gradients edge
  • 相关文献

参考文献3

二级参考文献35

  • 1刘志刚,刘代志.基于小波变换的图象放大方法再探讨[J].中国图象图形学报(A辑),2003,8(4):403-408. 被引量:18
  • 2Durand C X, Faguy D. Rational zoom of bitmaps using B-spline interpolation in computer-ized 2-D animation[J]. Computer Graphics Forum, 1990,9(1) :27 ~37.
  • 3Keys R G. Cubic convolution interpolation for digital image processing [J]. IEEE Transactions on Acoustics Speech, Signal Processing,1981, 29(6) :1153 ~ 1160.
  • 4Hou H S, Andrews H C. Cubic splines for image interpolation and digital filtering[ J]. IEEE Transactions on Acoustics Speech, Signal Processing, 1978, 26(6) :508 ~517.
  • 5Chen S L, Huang H Y, Luo C H. A low-cost high-quality adaptive scalar for real-time multimedia applications. IEEE Transactions on Circuits and Systems for Video Techology, 2011, 21(11): 1600--1611.
  • 6Hwang I, Kang B, Gerard J. High-resolution image scaler using interpolation filter for multimedia video applications. IEEE Transactions on Consumer Electronics, 1997, 43(3): 813-818.
  • 7Doswald D, Hafliger J, Blessing P, Felber N, Niederer P, Fichtner W. A 30-frames/s megapixel real-time CMOS im- age processor. IEEE Journal of Solid-State Circuits, 2000, 35(11): 1732-1743.
  • 8Lehmann T M, Gonner C, Spitzer K. Addendum: B-spline interpolation in medical image processing. IEEE Trnnsnc- tions on Medical Imaging, 2001, 20(7): 660--665.
  • 9Battiato S, Gallo G, Stanco F. A locally adaptive zooming algorithm for digital images. Image and Vision Computing, 2002, 20(11): 805-812.
  • 10Chen M J, Huang C H, Lee W L. A fast edge-oriented algo- rithm for image interpolation. Image and Vision Computing, 2005, 23(9): 791-798.

共引文献52

同被引文献91

引证文献17

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部