期刊文献+

基于相似度数据融合的车辆航向角研究 被引量:2

Vehicle Heading Angle Research Based on Similarity Data Fusion
下载PDF
导出
摘要 为提高车辆行驶过程中的轨迹和姿态控制精度,需将同质车载传感器的测量值进行数据融合,以此获取高精度的关键控制变量。将司南高精度定位、VBox和车辆CAN总线所测得的车辆航向角数据,使用基于相似度的数据融合算法,对测量结果进行数据融合,并分别计算各个数据融合源、数据融合最终值与选定的参考目标值之间的误差。结果表明,数据融合最终值的误差限为0.23°,分别小于数据融合源的0.8°、2.1°和2.7°,精度均高于其它数据融合源。 In order to improve the accuracy of the vehicle trajectory and attitude control during driving,it is necessary to integrate the measured data from the homogeneous sensors to obtain the high-precision key control variables.The measured values of the heading angle from the CM510-21 T,VBox and the vehicle CAN bus were fused by using the similarity-based data fusion algorithm. The errors in the data fusion sources and between the final value after data fusion and the referential target value were calculated. The results show that the margin of error for the final value is 0.23°,which is lower than 0.8°,2.1°,2.7° originating from the data fusion sources,and the accuracy after data fusion is higher than that from each data fusion source.
作者 闫晓雷 邵毅明 曾俊延 YAN Xiaolei,SHAO Yiming,ZENG Junyan(School of Traffic & Transportation,Chongqing Jiaotong University,Chongqing 400074,Chin)
出处 《汽车工程学报》 2018年第3期212-217,共6页 Chinese Journal of Automotive Engineering
基金 重庆市重点产业共性关键技术创新专项(cstc2015zdcy-ztzx60005)
关键词 交通运输 航向角 相似度数据融合 车载传感器 智能汽车 transportation heading angle similarity data fusion vehicular sensors intelligent vehicle
  • 相关文献

参考文献3

二级参考文献25

  • 1孙勇,张劼,景博.一种改善分布式参数检测数据性能的新方法[J].电测与仪表,2004,41(6):8-10. 被引量:6
  • 2李增荣,宋冬生,姜鹏.一类新型的机动目标跟踪算法[J].海军航空工程学院学报,2005,20(5):527-529. 被引量:2
  • 3[1]Varshney P K. Multisensor data fusion [J]. J of Electronics and Communication Engineering, 1997:245-253.
  • 4[2]John M R. Fusion of multisensor data[J]. The Int J of Robotics Research, 1988, 7(6) :78-96.
  • 5[3]Rao B S Y. A fully decentralized multisensor system for tracking and surveillance [J]. The Int J of Robotics Research, 1988, 12 (1): 20-45.
  • 6[4]Luo R C, Lin M, Scherp P C. Dynamic multisensor data fusion system for intelligent robots[J]. IEEE J of Robotics and Automation, 1988, 4(4) :386-396.
  • 7[5]Bloch I. Information combination operators for data fusion: A comparative review with classification [J].IEEE Trans on System Man and Cybernitic: Part A,1996, 26(1):52-67.
  • 8John M R.Fusion of multi-sensor data[J].Journal of Robotics Research,1998:7(6),78-96.
  • 9Goutsias J,Mahler R P S.Random Sets Theory and Application[M].Springer,2003.
  • 10Chris J.H,Qiang G.State estimation and multi-sensor data fusion using data-based neurofuzzy local linearization process models[J].Information Fusion,2001,(2):17-29.

共引文献51

同被引文献10

引证文献2

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部