期刊文献+

索拉非尼的不良反应信号挖掘 被引量:15

The data-mining of ADR signals for Sorafenib
下载PDF
导出
摘要 目的为了挖掘分子靶向抗癌药索拉非尼的不良反应信号,为临床安全用药提供参考。方法利用比例失衡法中的报告比值比法(ROR)和比例报告比值法(PRR)对美国FDA不良事件报告系统(FAERS)2012年第四季度~2016年第四季度共17个季度的报告进行数据挖掘。结果使用ROR法与PRR法共得到索拉非尼不良反应信号777个,二次筛选后得到索拉非尼不良反应信号68个,主要集中在肿瘤、肝胆疾病、胃肠道疾病与皮肤疾病。结论本研究有效利用ROR法和PRR法挖掘出索拉非尼的不良反应信号;建议临床用药时,充分考虑索拉非尼可能导致的不良反应进行适合的用药。 Objective To excavate the adverse drug reaction signals of molecular targeted antitumor drug Sorafenib, in or der to provide references for safety medicinal practice. Methods Conduct data-mining on the reporting odds ratio(ROR)and proportional reporting ratio(PRR) in measures of disproportionality to the reports in 17 quarters(Q4, 2012-Q4, 2016)in FDA Adverse Event Reporting System(FAERS). Results Seven hundred and seventy-seven Sorafenib adverse drug reaction signals were obtained with ROR and PRR methods. After the secondary screening, 68 Sorafenib adverse drug reaction signals were obtained, which were mainly concentrated in tumors, hepatobiliary, gastrointestinal and skin diseases.Conclusion In this study, ROR and PRR are effectively used to extract the adverse drug reaction signals of Sorafenib.It is recommended that the appropriate attentions should be paid to the possible adverse reactions caused by Sorafenib.
作者 周健 陈力 ZHOU Jian;CHEN Li(Pharmacy Department, the Third People's Hospital of Chengdu, Sichuan Province, Chengdu 610031, China;PharmacyDepartment, West China Second University Hospital, Sichuan Province, Chengdu 610041, China)
出处 《中国医药导报》 CAS 2018年第14期111-115,共5页 China Medical Herald
关键词 分子靶向药 不良反应信号 比例失衡法 索拉非尼 Molecular targeted drugs ADR signals Measures of disproportionality Sorafenib
  • 相关文献

参考文献9

二级参考文献130

  • 1陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(上)[J].药物流行病学杂志,2006,15(1):43-45. 被引量:4
  • 2陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(下)[J].药物流行病学杂志,2006,15(2):104-107. 被引量:27
  • 3Wood LS. Managing the side effects of sorafenib and sunitinib [ J ]. Commun Onco1,2006 ,3 :558 - 62.
  • 4WILLEM K, AMERY M D, PhD, FFPM. Signal Generation from Spontaneous Adverse Event Reports[J]. Pharmacoepidemiology and Drug Safety, 1999, 8: 147-150.
  • 5Hauben M, Zhou X. Quantitative methods in pharmacovigilance: focus on signal detection[J]. Drug Saf, 2003, 26(3):159-186.
  • 6Bate A, Lindquist M, Edwards I R, et al, A Bayesian neural network method adverse drug reaction singal generation[J]. Eur J Clin Pharmacol, 1998, 54(4):315-321.
  • 7Clark J A, Klincewicz S L, Stang P E. Spontaneous adverse event signaling methods: classification and use with health care treatment products[J]. Epidemiol Rev, 2001, 23(2):191-210.
  • 8Egberts A C, Meyboom R H, van Puijenbroek E P. Use of measures of disproportionality in pharmacovigilance: three Dutch examples [J]. Drug Saf, 2002, 25(6):453-458.
  • 9Hauben M, Horn S, Reich L. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions [J]. Drug Saf,2007, 30(2):14,3-155.
  • 10van Puijenbroek E P, Bate A, Leufkens H G, et al, A comparison of measures of dispropor-tionality for signal detection in spontaneous reporting systems for adverse drug reactions[J]. Pharmacoepidemiol Drug Saf, 2002, 11(1):3-10.

共引文献187

同被引文献122

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部