期刊文献+

复修正KdV方程的多辛整体保能量方法 被引量:1

Global Energy-Preserving Method for the Complex Modified KdV Equations
下载PDF
导出
摘要 基于二阶平均向量场方法和拟谱方法,构造了具有多辛结构的复修正Kd V方程新的数值格式,证明了该格式能保方程离散的整体能量守恒特性,并利用该格式在不同初始条件下数值模拟复修正Kd V方程孤立波的演化行为及分析格式的保能量守恒特性.数值实验表明:新的数值格式具有精确保持离散整体能量守恒的性质. A new numerical scheme for the multi-symplectic complex modified Kd V equation is constructed by the second order average vector field method and pseudo-spectral method. The corresponding discrete global energy conservation property of the new schemes is proved. The new schemes are applied to simulate the solitary wave evolution behaviors of the complex modified Kd V equation with different initial conditions. The preserving energy conservation property is analyzed. Numerical results show that the new scheme can preserve the discrete global energy conservation property.
作者 闫静叶 孙建强 YAN Jingye;SUN Jianqiang(College of Information Science and Technology, Hainan University, Haikou 570228, Chin)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2018年第2期112-115,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11161017 11561018) 海南省自然科学基金项目(114003) 海南大学基金项目(IZG8308001001)
关键词 多辛整体保能量方法 复修正KdV方程 平均向量场方法 multi-symplectic global energy-preserving method the complex modified KdV equation average vec-tor field method
  • 相关文献

参考文献4

二级参考文献37

  • 1贺国强.一类广义KdV方程的多重守恒格式及其理论分析方法[J].高等学校计算数学学报,1994,16(1):1-13. 被引量:1
  • 2朱佐农.系数依赖于时空坐标的广义KdV-MKdV方程的无穷守恒律[J].江苏农学院学报,1994,15(2):75-80. 被引量:1
  • 3MUNTHE-KAAS H. High Order Runge-Kutta Methods on Manifolds[ J]. Appl. Numer. Math. , 2003,29:115 -127.
  • 4ISERLES A, MUNTHE-KAAS H, NRSETY S P. Lie Group Methods[ J ]. Acta Numeric, 2000, 9:215 -365.
  • 5ZABUSKY N J, KRUSKAL M D. Interaction of ' solitons' in a collisionless palsma and the recurrence of initial states [ J ]. Phys. Rev. Lett, 1965, 15:240-243.
  • 6SUN Jian-qiang, MA Zhong-qi, QIN Meng-zhao. RKMK method of solving non-damping LL equations and ferromagnet chain equation[ J ]. Applied Mathematics and Computational, 2004, 157:407 -424.
  • 7QIN Meng-zhao. An implicit scheme for nonlinear evolution equations [ J ]. J. Comp. Phys, 1982, 48 ( 1 ) :57 - 71.
  • 8GUO Ben-yu, WU Hua-mo. Numerical solution of Kdv equation [ J ]. J. Math. Anal. Applics. , 1981,82: 334 - 345.
  • 9谷超豪.孤粒子理论与应用[M].杭州:浙江科学技术出版社,1990.
  • 10ISERLES A, MARTHINSEN A. On the implementation of the method of Magnus series for linear di? erential equation[ J ]. BIT, 1999, 39:281 - 304.

共引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部