摘要
基于二阶平均向量场方法和拟谱方法,构造了具有多辛结构的复修正Kd V方程新的数值格式,证明了该格式能保方程离散的整体能量守恒特性,并利用该格式在不同初始条件下数值模拟复修正Kd V方程孤立波的演化行为及分析格式的保能量守恒特性.数值实验表明:新的数值格式具有精确保持离散整体能量守恒的性质.
A new numerical scheme for the multi-symplectic complex modified Kd V equation is constructed by the second order average vector field method and pseudo-spectral method. The corresponding discrete global energy conservation property of the new schemes is proved. The new schemes are applied to simulate the solitary wave evolution behaviors of the complex modified Kd V equation with different initial conditions. The preserving energy conservation property is analyzed. Numerical results show that the new scheme can preserve the discrete global energy conservation property.
作者
闫静叶
孙建强
YAN Jingye;SUN Jianqiang(College of Information Science and Technology, Hainan University, Haikou 570228, Chin)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2018年第2期112-115,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11161017
11561018)
海南省自然科学基金项目(114003)
海南大学基金项目(IZG8308001001)
关键词
多辛整体保能量方法
复修正KdV方程
平均向量场方法
multi-symplectic global energy-preserving method
the complex modified KdV equation
average vec-tor field method