期刊文献+

基于GA-WNN的极化SAR海洋溢油检测方法研究 被引量:1

Ocean oil-spill detection using Pol-SAR data based on GA-WNN
下载PDF
导出
摘要 海洋溢油对海洋生态和人类生活带来严重的影响。由于合成孔径雷达(Synthetic Aperture Radar,SAR)具有全天时全天候的工作能力,在海洋溢油检测中发挥重要作用。目前,极化SAR是SAR探测技术的先进手段。本文利用6个极化特征进行溢油检测,通过对比分析这些特征对不同溢油的检测能力,得出单一极化特征在溢油检测中存在不足。通过J-M特征优选方法,提取出溢油检测识别度较高的特征影像,并利用遗传算法优化的小波神经网络(Genetic Algorithm-Wavelet Neural Network,GA-WNN)进行溢油检测。利用2套Radarsat-2全极化数据进行了方法验证,结果表明,该方法优于其他检测方法,溢油检测精度分别达到90.31%和95.42%。 Ocean oil spills seriously threaten both the marine environment and human activity. Synthetic aperture radar (SAR) plays an important role in ocean oil-spill detection due to its all-weather and day-and-night capabilities. Polarimetric SAR (Pol-SAR) is an advanced SAR detection technology that makes full use of the backscattering characteristics between SAR channels and has demonstrated obvious advantages in ocean oil-spill detection. We conducted experiments to investigate six polarimetric characteristics, based on the fact that a single characteristic can be inadequate in oil-spill detection with respect to the analysis of different features. Using the J-M distance index method to perform feature selection, we then used the genetic-algorithm-optimized wavelet neural network (GA-WNN) to detect oil spills. The experimental results from two sets of Radarsat-2 data confirm the superior accuracy of the proposed method with regard to oil-spill detection, i.e., 90.31% and 95.42%, respectively.
作者 陈伟民 丁亚雄 宋冬梅 王斌 刘善伟 甄宗晋 张婷 杨敏 CHEN Wei-min;DING Ya-xiong;SONG Dong-mei;WANG Bin;LIU Shan-wei;ZHEN Zong-jin;ZHANG Ting;YANG Min(School of Geosciences,China University of Petroleum,Qingdao 266580,China;Laboratory for MarineMineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266580,China;Graduate School,China University of Petroleum,Qingdao 266071,China;First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China;North China Sea Marine Technical Support Center,SOA,Qingdao 266033,China)
出处 《海洋科学》 CAS CSCD 北大核心 2018年第1期70-81,共12页 Marine Sciences
基金 国家重点研发计划(2017YFC1405600) 国家自然科学基金项目(41772350 61371189 41706208 41701513)~~
关键词 RADARSAT-2 SAR 极化特征 遗传算法 小波神经网络 海洋溢油 Radarsat-2 SAR Polarimetric SAR Characteristic Genetic Algorithm Wavelet Neural Network Ocean oil spill
  • 相关文献

参考文献2

二级参考文献38

  • 1李培基.高亚洲积雪分布[J].冰川冻土,1995,17(4):291-298. 被引量:53
  • 2YANG Jungang,ZHANG Jie,MENG Junmin.Underwater topography detection of Shuangzi Reefs with SAR images acquired in different time[J].Acta Oceanologica Sinica,2007,26(1):48-54. 被引量:6
  • 3Hoinkes H. Glaciology in the international hydrological decade. IAHS Publication, 1967 (79): 7–16.
  • 4Hall D K, Riggs G A, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote sensing of Environment,1995,54(2): 127–140.
  • 5Nagler T, Rott H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 754–765.
  • 6Shi J, Dozier J.Measurements of snow-and glacier-covered areas with single-polarization SAR.Annals of Glaciology, 1993, 17: 72–76.
  • 7Shi J, Dozier J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sensing of Environment, 1997, 59(2): 294–307.
  • 8Singh G, Venkataraman G, Yamaguchi Y, et al. Capability Assessment of Fully Polarimetric ALOS–PALSAR data for Discriminating Wet Snow from Other Scattering Types in Mountainous Regions. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1177–1196.
  • 9Cloude S R, Pottier E. Areview of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518.
  • 10Shimoni M, Borghys D, Heremans R, et al. Fusion of PolSAR and PolInSAR data for land cover classification. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3): 169–180.

共引文献17

同被引文献58

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部