期刊文献+

快速强跟踪UKF算法及其在机动目标跟踪中的应用 被引量:8

Speedy strong tracking unscented Kalman filter and its application in maneuvering target tracking
下载PDF
导出
摘要 当系统模型不能正确描述真实系统时,强跟踪无迹卡尔曼滤波(unscented Kalman filter,UKF)能很好地弥补传统UKF鲁棒性差的不足,保证滤波精度,但需要额外使用无迹变换,极大地增加计算量。针对这一问题,利用Taylor展开分析渐消因子在UKF中的机理,建立渐消因子近似引入方法,提出快速强跟踪UKF。基于统计浮点运算次数的方法定性分析计算量,表明快速强跟踪UKF计算量与传统UKF相近。根据滤波收敛性判据,讨论了强跟踪UKF的收敛性。仿真实例证明,快速强跟踪UKF滤波精度与强跟踪UKF相差无几,计算量大幅降低。 When the system model can not correctly describe the real system,the strong tracking unscented Kalman filter(UKF)can well make up the lack of robustness in the traditional UKF and ensure the accuracy of filtering.However,the computational load of strong tracking UKF is greatly increased due to the additional use of unscented transform.To solve this problem,the Taylor expansion is employed to analyze the mechanism of fading factor in UKF,an approximation fading factor introducing method is established,and the speedy strong tracking UKF is proposed based on the approximation introducing method.A qualitative analysis is carried out using statistical floating-point operations(flops),which shows that the computational load of speedy strong tracking UKF is close to that of traditional UKF.The convergence is discussed based on the filtering convergence criterion.Simulation results demonstrate that speedy strong tracking UKF performs similarly compared with strong tracking UKF,while the computational load has been significantly degraded.
作者 鲍水达 张安 毕文豪 BAO Shuida 1, ZHANG An 2, BI Wenhao 2(1. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129,China;2. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, Chin)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第6期1189-1196,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61573283)资助课题
关键词 无迹卡尔曼滤波 强跟踪 渐消因子引入方法 计算量 滤波精度 unscented Kalman filter (UKF) strong tracking filter fading factor introducing method computational load filtering accuracy
  • 相关文献

参考文献7

二级参考文献65

共引文献264

同被引文献80

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部