期刊文献+

基于Hadoop与Spark的高校校园大数据平台研究 被引量:9

Research on University Campus Big Data Platform Based on Hadoop and Spark
下载PDF
导出
摘要 对校园大数据分析是校园信息化发展的新思路。Hadoop是Apache基金会开发的分布式系统基础架构,它是集分布式计算、存储和管理为一体的生态系统。目前流行的Spark框架是与Hadoop生态系统中的MapReduce类似的一个分布式计算平台,Spark比MapReduce的速度更快且提供的功能更丰富。本文以数据采集、数据存储、数据分析、数据展现为主线,结合大数据领域最流行的Hadoop框架与Spark框架提出了高校校园大数据平台架构,详细阐述了架构各层次的具体功能,并对架构中关系数据库数据的采集存储进行了详细介绍,最后设计校园大数据分析原型系统来验证架构的可行性。 The analysis of campus big data is a new way of campus information development.Hadoop is a distributed system infrastructure developed by Apache Foundation,which is an ecosystem integrating distributed computing,storage and management.The current popular Spark framework is a distributed computing platform similar to MapReduce in the Hadoop ecosystem,and Spark is faster and more functional than MapReduce.With the main line of data collection,data storage,data analysis and data presentation,this paper puts forward the big data platform architecture of university campus in combination with the most popular Hadoop framework and Spark framework in big data fields,and expounds the specific functions of the architecture at all levels in detail,and gives a detailed description of the data collection and storage of the related coefficients in the architecture.Finally,the campus big data analysis prototype system is designed to verify the feasibility of the architecture.
作者 刘萍 LIU Ping(Department of Computer Science,Jiangyin Polytechnic College,Jiangyin 214400,China)
出处 《软件工程》 2018年第5期15-18,共4页 Software Engineering
基金 江阴职业技术学院课题"基于Spark的大数据处理平台的构建及研究"(17E-JS-25) 江苏省软件与服务外包实训基地子课题"基于Spark的大数据体验系统的创新应用实践"(2017-PPZY-A-R-19)
关键词 大数据 HADOOP SPARK 校园大数据平台 big data Hadoop Spark campus big data platform
  • 相关文献

参考文献4

二级参考文献96

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:95
  • 2王煜,王正欧.基于模糊决策树的文本分类规则抽取[J].计算机应用,2005,25(7):1634-1637. 被引量:13
  • 3张玉芳,彭时名,吕佳.基于文本分类TFIDF方法的改进与应用[J].计算机工程,2006,32(19):76-78. 被引量:121
  • 4程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 5Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 6Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.
  • 7Wang F Y. A Big-Data Perspective on AI: Newton, Merton, and An- alytics Intelligence. IEEE Intelligent Systems, 2012, 27 (5) : 2-4.
  • 8Simon H A. Why Should Machines Learn?//Michalski R S, Car- bonell J G, Mitchell T M, et al. , eds. Machine Learning: An Arti- ficial Intelligence Approach. Berlin, Germany: Springer, 1983: 25 -37.
  • 9Hart P. The Condensed Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1968, 14(3) : 515-516.
  • 10Gates G. The Reduced Nearest Neighbor Rule. IEEE Trans on In- formation Theory, 1972, 18(3) : 431-433.

共引文献395

同被引文献56

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部