期刊文献+

列控车载设备的控车核心算法 被引量:10

Core Algorithm for Train Control Onboard Equipment
下载PDF
导出
摘要 针对高速列车运行超速安全防护,提出列控车载设备的控车核心算法,总体架构包括动车组制动参数导入、线路数据输入、安全距离预留、模式曲线生成和速度监控处理。算法功能模块划分为制动参数处理、线路数据处理、模式曲线处理和速度监控处理4个模块,其中控车曲线计算公式为列控车载设备控车核心算法关键,分别给出紧急制动曲线、常用制动曲线、紧急制动触发曲线和常用制动触发曲线的计算公式。在真实设备实验室内进行不同线路坡度和线路速度条件下的动车组制动实验,测得列控车载设备模式曲线制动距离,并将其与仿真算法软件计算的距离进行对比验证。结果表明:列控车载设备控车核心算法仿真结果与真实列控车载设备实时监测结果误差率不大于0.08%。将控车核心算法应用于新建铁路客运专线闭塞分区的符合性验证可知,该算法简化了仿真数据配置,减少了测试工作量,有利于缩短检算周期,并能及时反馈闭塞分区符合性检算结果,具有理论和实用价值。 Aiming at the overspeed safety protection for high speed train operation,the core algorithm for train control onboard equipment was proposed.The overall structure included the EMU brake parameter input,line data input,safe distance reservation,mode curve generation and speed control processing.The algorithm was divided into four functional modules,such as brake parameter processing,line data processing,mode curve processing and speed control processing.The calculation formula for train control curves was the key to the core algorithm for train control onboard equipment.The calculation formulas for emergency brake curve,service brake curve,emergency brake triggering curve and service brake triggering curve were given respectively.The EMU braking experiments under different slope and line speed conditions were carried out in the real equipment laboratory.The braking distances of the mode curves of train control onboard equipment were measured,and comparative verification was conducted with the braking distances calculated by the simulation algorithm software.Results show that the error rate between the simulation results of the core algorithm for train control onboard equipment and the real-time monitoring results of real train control onboard equipment is less than 0.08%.The core algorithm for train control onboard equipment is applied to the compliance verification of the block section on newly built passenger dedicated line.It is verified that this method not only simplifies the configuration of simulation data,reduces the workload of tests and shortens the period of checking calculation,but also has a theoretical and practical value for the timely feedback of the checking calculation results of the compliance verification in block section.
作者 贺广宇 HE Guangyu(Signal & Communication Research Institute, China Academy of Railway Sciences Beijing 100081, China)
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2018年第3期110-116,共7页 China Railway Science
基金 中国铁道科学研究院行业服务技术创新项目(1651TH6702)
关键词 列控车载设备 控车核心算法 模式曲线 闭塞分区符合性验证 Train control onboard equipment Core algorithm for vehicle control Mode curve Compliance verification of block section
  • 相关文献

参考文献2

二级参考文献8

  • 1LUO R E, YIH C, SU K L. Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions [J]. IEEE Sensors Journal, 2002, 2 (2): 107-119.
  • 2KERR T H. Decentralized Filtering and Redundancy Management for Muhi-Sensor Navigation [J]. IEEE Trans on ARS, 1985, 23 (1): 83-119.
  • 3MASANOBU N, TADASHI I, HIKARU I. Feedback Control of Braking Deceleration on Railway Vehicle [J]. Transactions of the ASME, 2006, 128 (2) : 244-250.
  • 4International Union of Railways. UIC CODE 544-1 Brakes-Braking Power [S]. 4th ed. Paris: International Union of Railways, 2004.
  • 5ERTMS.System Requirements Specification 2.3.0[S].2008.
  • 6UIC 544-1 [S]. 2004.
  • 7刘瑞华,刘建业.联邦滤波信息分配新方法[J].中国惯性技术学报,2001,9(2):28-32. 被引量:35
  • 8盛三元,王建华.联合卡尔曼滤波在多传感器信息融合中的应用[J].雷达与对抗,2002,22(1):27-33. 被引量:21

共引文献25

同被引文献68

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部