期刊文献+

基于随机矩阵理论的配电网阵列薄弱性评估系统设计 被引量:9

Weak Point Detection System Design Based on Random Matrix Theory for Distributed Network
下载PDF
导出
摘要 基于随机矩阵理论设计了配电网阵列的薄弱性评估系统。依次介绍了工程项目背景和算法理论知识,通过对实际数据的时空联合特性分析,提炼出大数据中的高维指标。所设计的方案已经部署于实际电力系统平台上,服务于巡检、调度等作业。最后通过真实算例对所提方案进行验证,进而提出了命中率和虚警率作为方案的考量指标。 Based on random matrix theory,a system was designed for weak point detection of distribution network. The engineering background and related theories were introduced. Using the spatial-temporal analysis,the feature in the data was extracted in the form of indicator. The approach was validated using field data on certain physical platform for routing inspection and dispatch. Furthermore,hit ratio and false alarm ratio were presented to estimate the designed system.
作者 徐重酉 韩翊 贺兴 卓一 石鑫 XU Zhongyou 1, HAN Yi 2, HE Xing 3, ZHUO Yi 2, SHI Xin 3(1.State Grid Ningbo Electric Power Corporation, Ningbo 315012, China;2.Zhejiang Creaway Information Technology Co.,Ltd., Hangzhou 310008, China;3.Shanghai Jiaotong University, Shanghai 200240, Chin)
出处 《电器与能效管理技术》 2018年第9期54-59,共6页 Electrical & Energy Management Technology
基金 国家自然科学基金项目(61571296)
关键词 大数据技术 薄弱阵列 随机矩阵理论 配电网 巡检 调度 big data analytics weak point random matrix theory distribution network routing inspection dispatch
  • 相关文献

参考文献2

二级参考文献39

  • 1侯勇,张荣乾,谭忠富,王成文,曹福成.基于模糊聚类和灰色理论的各行业与全社会用电量关联分析[J].电网技术,2006,30(2):46-50. 被引量:25
  • 2吴猛.基于Web的数据可视化技术初探[J].福建电脑,2007,23(12):58-59. 被引量:6
  • 3廖向旗,李欣然,李培强,李村晓,胡剑宇.基于灰色关联聚类的负荷特性分类[J].电力科学与技术学报,2007,22(2):28-33. 被引量:15
  • 4Michael Schroeck, Rebecca Shockley, Peter Tufano, et al. Analytics: the real-world use of big data[EB/OL]. [2014-08]. http://public. dhe.ibm.com/common/ssi/ecm/en/gbe0352 lusen/GBE03521USEN. PDF.
  • 5Nimmagadda S L, Dreher H V. Big-data integration methodologies for effective management and data mining of petroleum digital ecosystems[C]// 2013 7th IEEE International Conference on Digital Ecosystems and Technologies(DEST). Menlo Park, CA: IEEE, 2013:148-153.
  • 6Greene C S, Tan J, UngM, et al. Big data bioinformatics[J]. Journal of Cellular Physiology, 2014, 229(12): 1896-1900.
  • 7Kezunovic Mladen, Xie Le, Grijalva Santiago. The role of big data in improving power system operation and protection[C]//Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid(IREP), 2013 IREP Symposium. Rethymno: IEEE, 2013: 1-9.
  • 8Ilic D, Karnouskos S, Wilhelm M. A comparative analysis of smart metering data aggregation performance[C]// 2013 llth IEEE International Conference on Industrial Informatics (IND/N). Bochum: IEEE, 2013: 434-439.
  • 9Corporation IBM. Managing big data for smart grids and smart meters[EB/OL]. [2014-08]. http://www.smartgridnews.eom/artman/ uploads/1/IBM_anaytics~aaper.pdf.
  • 10Wong P K C, Kalam A, Barr R. A "big data" challenge : turning smart meter voltage quality data into actionable information[C]//22nd International Conference and Exhibition on Electricity Distribution(CIRED2013). Stockholm: IET, 2013: 1-4.

共引文献230

同被引文献100

引证文献9

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部