期刊文献+

基于RBM的深度信念网络综述

Review on Deep Belief Network Based on RBM
下载PDF
导出
摘要 RBM是深度信念网络的重要组成单元,也是深度学习领域的基本方法之一。笔者首先介绍RBM模型的建立过程,在此基础之上详细分析RBM的三次数据传递过程。之后,引入深度信念网络模型,并介绍了两种深度信念网络的改进方法。最后,对深度信念网络的应用进行了总结和展望。 RBM is an important component of deep belief network, and is also one of the basic methods in deep learning field. The author first introduces the establishment process of RBM model, and then analyzes the three data transmission process of RBM in detail. After that, the deep belief network model is introduced, and two improved methods of deep belief network are introduced. Finally, the application of deep belief network is summarized and prospected.
作者 李腾飞 Li Tengfei(Luoyang Photoelectric Technology Development Center, Luoyang Henan 471000, China)
出处 《信息与电脑》 2018年第10期46-47,51,共3页 Information & Computer
关键词 受限波尔兹曼机 深度信念网络 深度学习 数据流分析 RBM DBN deep learning data flow analysis
  • 相关文献

参考文献2

二级参考文献53

  • 1宁国栋,张曙光,方振平.可重复使用航天器再入飞行综合仿真模型研究[J].系统仿真学报,2007,19(9):1905-1908. 被引量:3
  • 2叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 3Gorinevsky D,Bain J R,Aaseng G. Parametric Diagnostics of Flight Control and Propulsion for Rocket Ascent[J].AIAA Journal of Guidance Control and Dynamics,2004.
  • 4Korsmeyer D. ISHM Integrated Systems Health Management for Mission Reliability and Safety[R].NASA Intelligence Report,2006.
  • 5Blemel K G. Dynamic Autonomous Test Systems for Prognostic Health Management[J].DTIC Quality Inspected,1998.
  • 6Schwabacher M,Samuels J,Brownston L. NASA Integrated Vehicle Health Management Technology Experiment for X-37[A].2002.
  • 7Baroth E,Powers W T. IVHM Techniques for Future Space Vehicles[A].2001.
  • 8Luo J H,Tu F,Azam M S. Intelligent Model-Based Diagnostics for Vehicle Health Management[A].Orlando,2003.
  • 9Hess A,Calvello G,Dabney T. PHM a Key Enabler for the JSF Autonomic Logistics Support Concept[A].2004.3543-3550.
  • 10Hoyle C,Mehr A,Tumer I. On Quantifying Cost-Benefit of ISHM in Aerospace Systems[A].Montana,2007.1021-1027.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部