期刊文献+

一种基于多属性单值中智集相关度量测的视频运动目标检测方法 被引量:3

A Method for Visual Foreground Detection Using the Correlation Coefficient between Multi-Criteria Single Valued Neutrosophic Multisets
下载PDF
导出
摘要 视频运动目标检测是视觉传感器数据分析的主要任务之一,其主要用于视频监控。鉴于效率,一些基本的背景模型经常被用于该项任务。然而,当视频图像中存在由于天气、背景扰动等因素带来的噪声时,基于该类模型的动目标检测效果往往会受到严重影响。基于中智集理论提出了一种改进的运动目标检测方法。首先,利用基础背景模型计算得到背景差图像序列;接着提出面向中智集理论的真(Truth)、不确定(Indeterminacy)、假(Falsity)量测,将各背景差图像转换到中智集范畴;最后,综合利用多周期单值中智集相关度量测和一般单值中智集相关度量测强化图像中的运动目标区域,并利用Otsu方法确定最优分割阈值。通过对现实视频序列测试,实验结果表明本文方法能够克服恶劣天气、背景扰动等不良因素,鲁棒完成运动目标提取。 Visual foreground detection is one of the most important tasks for the data analysis of the visual sensor,and it is always applied in video surveillance. Several basic background models are often employed due to their high efficiency. However,their results will be highly disturbed when there exists noisy information generated by the bad weather,dynamic background etc. We utilize the theory of NS( Neutrosophic Set) to propose an improved method for foreground detection. First,a sequence of background subtraction images is calculated. Second,such a sequence is represented in the NS domain via three membership subsets T,I,and F. Finally,the correlation coefficient between multiperiod or normal single valued neutrosophic multisets is employed to highlight the moving objects on the image plane.Then the Otsu's method is employed to determine an optimized value for segmentation. Experiments are conducted on a variety of real-world video sequences,and the experimental results demonstrate that the proposed approach can extract the moving objects robustly,even when there exists challenges like bad weather or dynamic background.
作者 胡珂立 范恩 叶军 樊长兴 沈士根 谷宇章 HU Keli;FAN En;YE Jun;FAN Changxing;SHEN Shigen;GU Yuzhang(Department of Computer Science and Engineering,Shaoxing University,Shaoxing Zhejiang 312000,China;Department of Electrical and Information Engineering,Shaoxing University,Shaoxing Zhejiang 312000,China;Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2018年第5期738-745,共8页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61603258 61703280) 浙江省公益技术应用研究项目(2016C31082)
关键词 运动目标检测 中智集 单值中智集 相关度量测 foreground detection neutrosophic set single valued neutrosophic set correlation coefficient
  • 相关文献

参考文献3

二级参考文献49

  • 1侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 2Stauffer C,Crimson W E L. Adaptive Background Mixture Models for Real-Time Tracking [C]//Computer Vision and Pattern Recognition. CO, USA: IEEE, 1999 : 246-250.
  • 3Stauffer C, Crimson W E L. Learning Patterns of Activity Using Real-time Tracking[J]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2000,22 (8) : 747-745.
  • 4Zivkovic Z, van deer Hidden F. Recursive Unsupervised Learning of Finite Mixture Models[J]. IEEE Trans. on PAMI, 2004, 26 (5) :651-656.
  • 5Abuttal A S, Automatic Threshold of Gray-Level Pictures Using Two Dimensional Entropy[J]. Computer Vision Graphics and Image Processing, 1989,47 (2) :22 - 32.
  • 6Moment A, Mitten A, Piraguas N, and Ramsey V"Background Modeling and Subtraction of Dynamic Scenes" [C]//Proc. of Intemational Conference on Computer Vision (ICCV), 2003 : 1305-1312.
  • 7Y. Ran, C. Chua, and Y. Ho, "Motion Detection with Non-stationary Background, "I-C]//Proc. Of 11 th Int'l Conf. Image Analysis and Processing, 2001 : 78-83.
  • 8Sohail Nadimi, Bir Bhanu. Physical Models for Moving Shadow and Object Detection in Video. IEEE Transactions on Pattern Analysis and Machine Intelligence [J]. 2004, 26 (8): 1079-1087.
  • 9D. Gutehess et al. , "A Background Model Initialization Algorithm for Video Surveillance," [C]//In Proceedings Eighth IEEE International Conference on Computer Vision. (Vancouver,BC) ,July 2001 : 740-744.
  • 10Ying-Li Titan and Arum Hampapur. Robust Salient Motion Detection with Complex Background for Real-time Video Surveillance[R]. IBM Watson Research Center 2007:1024-1026.

共引文献22

同被引文献22

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部