摘要
研究了一类不确定分数阶非线性系统有限时间稳定性及自适应滑模同步控制,通过构造有效的分数阶滑模面及自适应规则,设计了主动控制器,并证明了在满足系统所有变量有界的情况下误差系统能够在有限时间内趋于滑模面。数值仿真中实现了分数阶Duffing-Holmes系统和分数阶Van der Pol系统的异结构有限时间同步,进一步验证了该方法的有效性和鲁棒性。
Chaos control and synchronization of fractional order nonautonomous complex chaotic systems are discussed in this paper. A novel fractional nonsingular terminal sliding surface which is suitable for fractional systems is proposed. It is proved that once the state trajectories of the system reach to the proposed sliding surface,they will be converged to the origin within a given finite time. The proposed method is implemented between Duffing-Holmes system and Van der Pol system to comfirm the theoretical results. Simulation results verify the proposed control method.
作者
高瑜
李雄
GAO Yu;LI Xiong(Department of Basic Courses, Shaanxi Railway Institute, Weinan 714000, China;Department of Mathematics and Computational Science Courses, Xian Eurasia University, Xi' an 710065, China)
出处
《电子设计工程》
2018年第11期118-122,共5页
Electronic Design Engineering
基金
陕西铁路工程技术学院科研基金项目(KY2017-20)
关键词
分数阶非线性系统
有限时间稳定
同步控制
fractional-order chaotic system
finite-time stability
synchronization control