摘要
为了准确地获得C反应蛋白(C-reactive protein,CRP)的浓度,研制了一种家用血液检测服务系统,并设计了诊断与预测算法。诊断算法采用以决策树模型为基础的病情诊断算法,预测算法采用以灰色预测模型为基础的病情预测算法。两种算法的实验结果表明:病情诊断算法的测试集准确率为88.45%,符合诊断要求;病情预测算法的小误差概率P>0.95,拟合效果较好。该研究可为辅助心脑血管疾病的医学治疗提供参考。
In order to get the concentration of C-reactive protein (CRP) precisely, test services system was developed. Meanwhile, a diagnosis algorithm and a prediction algorithm weredesigned. Decision tree model was u e d in diagnosis algorithm and grey forecasting prediction algorithm. Experiments of two algorithms show that, diagnosis algorithm, s precision is 88.4 5 % and prediction algorithm , s minor error probability P is bigger than 0.95 , which meets thesystem requirements. These algorithms offer a reference for medical treatment of cardiocerebrovasculardisease.
作者
傅成杰
闫维新
赵言正
FU Chengjie, YAN Weixin , ZHAO Yanzheng(Research Institute of Robotics,Shanghai Jiaotong University,Shanghai 200240,Chin)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2018年第5期145-150,209,共7页
Journal of Chongqing University of Technology:Natural Science
基金
上海交通大学医工交叉项目(YG2016MS63)
关键词
C反应蛋白
决策树模型
灰色预测模型
心脑血管疾病
C-reactive protein
decision tree model
grey forecasting model
cardio-cerebrovasculardisease