期刊文献+

面向为盲人导航的人机队形控制方法研究 被引量:2

Research on human-robot formation control strategy for guiding blind people
下载PDF
导出
摘要 在为盲人导航的移动机器人系统中,设计可靠的人机队形控制方法对提高导航的有效性和成功率具有重要意义。针对目前传统为盲人导航系统中,机器人与使用者之间没有固定队形以及使用者只能被动跟随等缺陷,提出了一种基于多机器人领域领导者-跟随者控制模型的人机队形控制方法。与传统的领导者-跟随者控制模型不同,该方法以使用者为主导,使用者可以自由选择行走速度。根据使用者的线速度调节机器人的线速度和角速度,根据使用者与机器人之间的相对位置提示使用者调整前进方向,从而使得使用者与机器人之间的相对距离和相对方位角收敛到给定值。实验结果表明,测试者平均队形偏差的均值小于0.2 m,能够满足实际使用需求。 In mobile robot systems for guiding blind people,the design of a reliable human-robot formation control strategy is important to improve the effectiveness and success rate of the navigation. In traditional navigation systems,there are no fixed formations between robots and users,and users have to follow the robots passively. Hence,a leader-follower control model based human-robot formation control strategy is proposed. Different from the traditional leader-follower control model,the proposed strategy is human-centered and the user can freely select his/her walking speed. In order to maintain the distance and relative bearing between the robot and the user,the linear and angular velocity of the robot is regulated based on user's linear velocity,and the user is prompted to adjust his/her orientation based on his/her relative position to the robot. The experimental results demonstrate that the mean of the formation errors is smaller than0. 2 m which meets the actual requirements.
作者 尤剑 宋光明 施顺明 韦中 宋爱国 You Jian;Song Guangming;Shi Shunming;Wei Zhong;Song Aiguo(School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第2期21-29,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61375076)项目资助
关键词 为盲人导航 人机队形控制 领导者-跟随者控制模型 移动机器人 blind people guidance human-robot formation control leader-follower control model mobile robot
  • 相关文献

参考文献8

二级参考文献91

  • 1黄立人,高砚龙,任立生.关于NEU(ENU)坐标系统[J].大地测量与地球动力学,2006,26(1):97-99. 被引量:43
  • 2蔡自兴,肖正,于金霞.动态环境中移动机器人地图构建的研究进展[J].控制工程,2007,14(3):231-235. 被引量:12
  • 3石朝侠,洪炳镕,周彤,王燕清.大规模环境下的拓扑地图创建与导航[J].机器人,2007,29(5):433-438. 被引量:18
  • 4余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 5HAN J G,SHAO L,XU D,et al.Enhanced computervision with microsoft kinect sensor:A review[J].IEEE Transactions on cybernetics,2013,43(5):1318-1334.
  • 6HISEH CH T,WANG H CH,WU YK,et al.A Kinect-based people-flow counting system[C].2012 Internation-al Symposium on Intelligent Signal Processing and Com-munications Systems(ISPACS),2012:146-150.
  • 7DI WU,ZHU F,SHAO L.One shot learning gesturerecognition from RGBD images[C].2012 IEEE Comput-er Society Conference on Computer Vision and PatternRecognition Workshops(CVPRW),2012:7-12.
  • 8SPINELLO L,ARRAS K O.People detection in RGB-Ddata[C].2011 IEEE/RSJ International Conference onIntelligent Robots and Systems(IROS),2011:3838-3843.
  • 9XIA L,CHEN CH CH,AGGAKWAL J K.Humandetection using depth information by kinect[C].2011 IEEE Computer Society Conference on Computer Vi-sion andPattern Recognition Workshops(CVPRW),2011;15-22.
  • 10AMAMRA A,MOUATS T,AOUF N.GPU based GMMsegmentation of Kinect data[C].56th International Sym-posium ELMAR,2014,1-4.

共引文献113

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部