期刊文献+

基于混合高斯模型的生猪个体检测算法 被引量:2

Individual Pig Object Detection Algorithm Based on Gaussian Mixture Model
下载PDF
导出
摘要 背景模型对于视频中运动目标检测的目标提取至关重要。高斯混合模型(GMM)是背景模型中常用的方法之一。混合高斯模型对于目标生猪检测存在算法效率低、误判点和鬼影等缺点。对此本文提出了一种基于自适应高斯混合模型的改进算法,以克服传统高斯混合模型在猪目标检测中的不足。本文基于高斯混合背景模型,引入了视频帧m和t_0的两个新参数。在混合高斯背景模型基础上,为了提高建模收敛速度,采用自适应调整高斯分布模型个数。本文通过每m帧对高斯分布进行一次扫描,删除多余的高斯分布,来提高模型的收敛速度。同时,采用自适应调整学习率值来消除误判和鬼影;初始阶段采用较高而且递减的学习率,在t_0帧之前加快背景建模;随着时间的持续,背景模型逐渐变得稳定,此时可以使用较小的学习率。t_0帧后为了保持稳定的背景建模,减少噪声干扰,本文采用了在t_0后使用固定的学习率。实验结果表明,该算法能够快速建立初始背景模型,检测运动目标猪,并提取目标猪的完整轮廓。该算法具有良好的鲁棒性和适应性。
出处 《中国农业文摘(农业工程)》 2018年第4期8-12,共5页 Agricultural Science and Engineering in China
基金 国家高技术研究发展计划(863计划)资助项目(2013AA102306) 山东省自主创新资助项目(2014XGA13054)
  • 相关文献

同被引文献41

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部