期刊文献+

弱纹理环境下视觉里程计优化算法研究 被引量:7

Optimization on Visual Odometryunder Weak Texture Environment
原文传递
导出
摘要 针对视觉里程计在弱纹理的道路环境下定位精度骤降的问题,提出一种双目视觉里程计优化算法。首先,通过提取局部特征平面,为立体匹配缺失的特征提供平面约束,增加有效立体特征的数量;其次,在特征追踪过程中,使用匀加速运动模型,提高特征追踪的数量和质量;最后,在位姿计算和优化过程中,使用考虑特征置信度的光束法平差算法来减少远距离特征引入的误差影响,提高算法的精度和稳健性。数据集实验和实际场景实验表明,该算法在占有极少计算资源的情况下对弱纹理环境下的定位精度有较明显的优化效果,在其他场景也具有较好的适应性。 To solve the problem that the accuracy of visual odometry was decreased in the weak texture environment,an optimization algorithm of binocular visual odometry is proposed.Firstly,the planar constraints are provided for the features without stereo matching by extracting the local feature plane,to increase the quantity of effective stereo features.Secondly,in feature tracking,the uniform acceleration motion model is used during feature tracking to increase the quantity and improve the quality of tracked features.Finally,in pose estimation and optimization,the bundle adjustment method which considers the feature confidence is adopted to reduce the influence of distant feature,and improve the accuracy and robustness of the algorithm.The experimental results based on the datasets and actual scene show that the proposed algorithm has obvious optimization effect on the positioning accuracy under weak texture environment with little computational resources,and has adaptability in other scenes.
作者 张易 项志宇 陈舒雅 顾淑霞 Zhang Yi;Xiang Zhiyu;Chen Shuya;Gu Shuxia(Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking Hangzhou, Zhejiang 310027, China;College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第6期218-225,共8页 Acta Optica Sinica
基金 国家自然科学基金(61571390) NSFC-浙江两化融合联合基金(U61709214)
关键词 机器视觉 视觉里程计 弱纹理 局部特征平面 特征置信度 machine vision visual odometry weak texture local feature plane feature confidence
  • 相关文献

参考文献4

二级参考文献14

共引文献56

同被引文献33

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部