期刊文献+

图稀疏算法研究进展

The State of the Art of Graph Sparse Algorithm
下载PDF
导出
摘要 作为加速大规模图分析的技术,图稀疏算法在尽可能保留原始图性质的基础上实现图的稀疏化存储,从而加速大规模图的分析和处理。图稀疏算法是一种顶点全保存边稀疏的采样方法,可概括为四种边度量下的图稀疏采样方法:基于距离相似性的生成图稀疏算法、基于边连通的割稀疏和谱稀疏算法、基于社会网络的聚类稀疏和影响力传播的稀疏算法。本文归纳了这些算法的优缺点和适应性,最后展望了大规模图稀疏化尚未探索的有意义的研究课题。
作者 徐丽丽
出处 《数据通信》 2018年第3期46-49,52,共5页
  • 相关文献

参考文献2

二级参考文献107

  • 1Satuluri V, Parthasarathy S. Scalable graph clustering using sto- chastic flows: applications to community discovery[C]// ACM SlGKDD. 2009 : 737-746.
  • 2Kulis B, Basu S, Dhillon I, et al. Semi-supervised Graph Cluste- ring: A Kernel Approach[J]. Machine I_earning, 2009,74 (1) : 1- 22.
  • 3Satuluri V,Parthasarathy S, Ruan Y. Local graph Sparsification for Sealable Clustering[C]//SIGMOD. 2011:737-746.
  • 4Lin J, Schatz M. Design patterns for efficient graph algorithms in mapreduce[C]//MLG. 2010: 78-85.
  • 5Lv Qin, Josephson W, Wang Zhe, et al. Multi-probe LSH: effi- cient indexing for high-dimensional similarity seareb[C] // Proc of the 33rd Int Conf on Very Large Data Bases(VLDB'07). Vien- na Austria: VLDB Endowment, 2007: 950-961.
  • 6Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 7Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 8Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 9Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 10Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部