期刊文献+

基于ICD-10诊断编码的慢性病并发症聚类算法 被引量:2

Chronic disease complications clustering based on ICD-10 diagnoses code
下载PDF
导出
摘要 慢性病与其相关并发症关系的研究,对患者以及医学研究都有重要意义。电子病历中记录的患者就诊数据为研究目标慢性病与其并发症的关系提供了数据基础,其中面临的挑战之一在于既需要使用临床医生的领域知识对并发症进行标注,又不希望给医生增加过多负担。设计了一种采用分组策略的基于ICD-10诊断编码的慢性病并发症半监督聚类方法,以实现在较少的医生专家参与下对慢性病并发症归类。真实糖尿病患者电子医疗记录数据集上的实验结果表明提出的算法是实用且有效的。 Study on the relationship between the chronic disease and the corresponding complications has great theoretical significance and applicable value for patients and clinical medicine. In order to utilize healthcare electronic record more reasonably, preprocessing was needed according to prior medical knowledge for chronic disease complication. The challenge of this work is that medical knowledge should be exploited to label the corresponding complications. To meet these challenges and assist physicians in labeling complications of a target chronic disease, a semi-supervised chronic disease complications clustering algorithm based on ICD-10 code for diagnoses was proposed. Experiments on a real dataset of diabetes electronic healthcare record show that the algorithms are practical and effective.
作者 王晓霞 蒋伏松 王宇 熊贇 WANG Xiaoxia;JIANG Fusong;WANG Yu;XIONG Yun(School of Computer Science, Fudan University, Shanghai 201203, China;Shanghai Key Laboratory of Data Science, Shanghai 201203, China;College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China;Shanghai Sixth People's Hospital, Shanghai 200233, China;Shanghai Putuo District Center for Disease Control and Prevention, Shanghai 200333, China)
出处 《大数据》 2018年第3期37-45,共9页 Big Data Research
基金 国家高技术研究发展计划("863"计划)基金资助项目(N o.2015AA020105) 上海市科技发展基金资助项目(No.16JC1400801 No.17511105502)~~
关键词 半监督学习 聚类算法 慢性病并发症 ICD-10诊断编码 semi-supervised learning clustering algorithm chronic disease complication ICD-10 diagnoses code
  • 相关文献

参考文献1

二级参考文献32

  • 1Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. Cambridge, USA : MIT Press, 2006 : 3 - 10.
  • 2Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-Training//Proe of the 11th Annual Conference on Computational Learning Theory. Madison, USA, 1998 : 92 - 100.
  • 3Zhong Shi. Semi-Supervised Model-Based Document Clustering: A Comparative Study. Machine Learning, 2006, 65 ( 1 ) : 3 - 29.
  • 4Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means Clustering with Background Knowledge // Proc of 18th International Conference on Machine Learning. San Francisco, USA, 2001:577 -584.
  • 5Wagstaff K, Cardie C. Clustering with Instance-Level Constraints// Proc of the 17th International Conference on Machine Learning. SanFrancisco, USA, 2000:1103 - 1110.
  • 6Huang Desheng, Pan Wei. Incorporating Biological Knowledge into Distance-Based Clustering Analysis of Micro Array Gene Expression Data. Bioinformatics, 2006, 22 (10) : 1259 - 1268.
  • 7Tari L, Baral C, Kim S. Fuzzy C-Means Clustering with Prior Biological Knowledge. Journal of Biomedical Informatics, 2009, 42 (1): 74-81.
  • 8Ceccarelli M, Maratea A. Improving Fuzzy Clustering of Biological Data by Metric Learning with Side Information. International Journal of Approximate Reasoning, 2008, 47 ( 1 ) : 45 - 57.
  • 9Huang Ruizhang, Lam W. An Active Learning Framework for Semi Supervised Document Clustering with Language Modeling. Data & Knowledge Engineering, 2008, 68 ( 1 ) : 49 - 67.
  • 10Erman J, Mahanti A, Arlitt M, et al. Offline/Realtime Traffic Classification Using Semi-Supervised Learning. Performance Evaluation, 2007, 64(9/10/11/12): 1194- 1213.

共引文献49

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部