期刊文献+

Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS_2) nanosheets overlayer 被引量:8

Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS_2) nanosheets overlayer
原文传递
导出
摘要 Tungsten disulfide(WS_2), as a representative layered transition metal dichalcogenide(TMDC) material, possesses important potential for applications in highly sensitive sensors. Here, a sensitivity-enhanced surface plasmon resonance(SPR) sensor with a metal film modified by an overlayer of WS_2 nanosheets is proposed and demonstrated. The SPR sensitivity is related to the thickness of the WS_2 overlayer, which can be tailored by coating a WS_2 ethanol suspension with different concentrations or by the number of times of repeated post-coating.Benefitting from its large surface area, high refractive index, and unique optoelectronic properties, the WS_2 nanosheet overlayer coated on the gold film significantly improves the sensing sensitivity. The highest sensitivity(up to 2459.3 nm∕RIU) in the experiment is achieved by coating the WS_2 suspension once. Compared to the case without a WS_2 overlayer, this result shows a sensitivity enhancement of 26.6%. The influence of the WS_2 nanosheet overlayer on the sensing performance improvement is analyzed and discussed. Moreover, the proposed WS_2 SPR sensor has a linear correlation coefficient of 99.76% in refractive index range of 1.333 to 1.360. Besides sensitivity enhancement, the WS_2 nanosheet overlayer is able to show additional advantages, such as protection of metal film from oxidation, tunability of the resonance wavelength region, biocompatibility, capability of vapor,and gas sensing. Tungsten disulfide (WS2), as a representative layered transition metal dichalcogenide (TMDC) material, possesses important potential for applications in highly sensitive sensors. Here, a sensitivity-enhanced surface plasmon resonance (SPR) sensor with a metal film modified by an overlayer of WS2 nanosheets is proposed and demo onstrated. The SPR sensitivity is related to the thickness of the WS2 overlayer, which can be tailored by coating a WS2 ethanol suspension with different concentrations or by the number of times of repeated post-coating. Benefitting from its large surface area, high refractive index, and unique optoelectronic properties, the WS2 nanosheet overlayer coated on the gold film significantly improves the sensing sensitivity. The highest sensitivity (up to 2459.3 nm/RIU) in the experiment is achieved by coating the WS2 suspension once. Compared to the case without a WS2 overlayer, this result shows a sensitivity enhancement of 26.6%. The influence of the WS2 nano- sheet overlayer on the sensing performance improvement is analyzed and discussed. Moreover, the proposed WS2 SPR sensor has a linear correlation coefficient of 99.76% in refractive index range of 1.333 to 1.360. Besides sensitivity enhancement, the WS2 nanosheet overlayer is able to show additional advantages, such as protection of metal film from oxidation, tunability of the resonance wavelength region, biocompatibility, capability of vapor, and gas sensing.
出处 《Photonics Research》 SCIE EI 2018年第6期485-491,共7页 光子学研究(英文版)
基金 National Natural Science Foundation of China(NSFC)(61575084,61705087,61705046,61361166006,61401176,61405075,61475066,61505069) Natural Science Foundation of Guangdong Province(2015A030313320,S2013050014606,2014A030313377,2014A030310205,2015A030306046,2016A030311019,2016A030313079,2016A030310098) Science and Technology Projects of Guangdong Province(2017A010101013,2012A032300016,2014B010120002,2014B010117002,2015A020213006,2015B010125007,2016B010111003,2016A010101017) Science and Technology Project of Guangzhou(201707010500,201506010046,201607010134,201605030002,201610010026,201604040005) China Postdoctoral Science Foundation(2017M612608)
关键词 Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide nanosheets overlayer RIU Plasmonics Surface waves Optical sensing and sensors
  • 相关文献

同被引文献42

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部