期刊文献+

推荐系统中的协同过滤推荐技术研究

Summary of Collaborative Filtering Recommendation Technology in Recommendation System
下载PDF
导出
摘要 随着移动互联网的进步和信息量的急剧增长, 信息过载使得用户获取需求信息更加困难.由于推荐系统可以较好地解决信息过载问题, 因而被广泛应用于各种移动网络平台.在推荐系统中, 应用最为广泛和成功的一种技术是协同过滤推荐.本文首先介绍了协同过滤推荐技术的原理、 分类和存在的问题, 然后简要概括了评价推荐系统是比较常用的评估方法, 并对进一步需要研究的问题进行总结. With the progress of mobile Internet and the rapid growth of information, information overload makes it more difficult for users to obtain information. As the recommendation system can solve the problem of information overload well, it is widely used in various mobile network platforms. One of the most widely used and successful appli.cations in recommender systems is collaborative filtering recommendation. This paper first introduced the principle,classification and existing problems of collaborative filtering recommendation technology, and then briefly summa.rized that the evaluation and recommendation system was a commonly used evaluation method, and summarized the further research problems.
作者 李转运 唐桂林 LI Zhuanyun ,TANG Guilin(Anhui Post and Telecommunication College,Hefei Anhui 23003)
出处 《河南科技》 2018年第10期21-23,共3页 Henan Science and Technology
基金 安徽省高校自然科学研究重点项目(KJ2017A875,KJ2017A876).
关键词 推荐系统 协同过滤 信息过载 recommender system;collaborative filtering;information overload
  • 相关文献

参考文献4

二级参考文献23

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 3工业和信息化部电信研究院.移动互联网白皮书[R],2011.
  • 4Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 14th Conference on Uneertainty in Artifical Itelligence(UAI-98),1998:43-52.
  • 5Akira Sato,Takahisa Ando,Hiroya Inakoshi,et al.Personalization System based on Dynamic Learning.
  • 6Sarwar B M,Karypis G,Konstan J,et al.Analysis of recommender algorithms for e-commerce[C]//Proceedings of the 2nd ACM ECommerce Conference.New York:ACM Press,2000:158-167.
  • 7Starwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proc of the 10th Int'l World Wide Web Conf.New York:ACM Press,2001:285-295.
  • 8中国互联网络信息中心.第32次中国互联网络发展状况统计报告[R].2013-07-17(4).
  • 9工业和信息化部电信研究院.移动互联网白皮书[R],2013.
  • 10张永生,刘保奇.垃圾短信之谜:神秘箱子给j公里内10万手机发信[N].新京报,2013-11-18(A12-A13)[2014-2-28].http://news.sohu.com/20131118/n390292159.shtml.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部