期刊文献+

Energetics of He and H Atoms in W–Ta Alloys: First-Principle Calculations

Energetics of He and H Atoms in W–Ta Alloys: First-Principle Calculations
下载PDF
导出
摘要 Properties of various defects of He and H atoms in W-Ta alloys are investigated based on density functional theory. The tetrahedral interstitial site is the most configured site for self-interstitial He and H in W and W-Ta alloys. Only a single He atom favors a substitutional site in the presence of a nearby vacancy. However, in the coexistence of He and H atoms in the presence of the vacancy, the single H atom favors the tetrahedral interstitial site(TIS) closest to the vacancy, and the He atom takes the vacancy center. The addition of Ta can reduce the formation energy of TIS He or H defects. The substituted Ta affects the charge density distribution in the vicinity of the He atom and decreases the valence electron density of the H atoms. A strong hybridization of the H s states and the nearest W d state s exists in W(53)He1 H1 structure. The sequence of the He p projected DOS at the Fermi energy level is in agreement with the order of the formation energy of the He-H pair in the systems. Properties of various defects of He and H atoms in W-Ta alloys are investigated based on density functional theory. The tetrahedral interstitial site is the most configured site for self-interstitial He and H in W and W-Ta alloys. Only a single He atom favors a substitutional site in the presence of a nearby vacancy. However, in the coexistence of He and H atoms in the presence of the vacancy, the single H atom favors the tetrahedral interstitial site(TIS) closest to the vacancy, and the He atom takes the vacancy center. The addition of Ta can reduce the formation energy of TIS He or H defects. The substituted Ta affects the charge density distribution in the vicinity of the He atom and decreases the valence electron density of the H atoms. A strong hybridization of the H s states and the nearest W d state s exists in W(53)He1 H1 structure. The sequence of the He p projected DOS at the Fermi energy level is in agreement with the order of the formation energy of the He-H pair in the systems.
作者 Chu-Bin Wan Su-Ye Yu Xin Ju 万初斌;余苏叶;巨新(Department of Physics, University of Science and Technology Beijing)
机构地区 Department of Physics
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期95-97,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 11605007 the Funding from the China Scholarship Council under Grant No 201506465019
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部