期刊文献+

基于狼群算法的DBN网络结构确定方法研究 被引量:3

Research on DBN Network Structure Determination Method Based on Wolves Algorithm
下载PDF
导出
摘要 由于深度信念网络(DBN)结构难以确定,提出运用狼群算法确定DBN每层神经元个数,K-means聚类准确性确定是否增加隐含层的方法确定DBN结构.根据狼群算法以最小化所有样本重构误差的平方和为目标函数来确定DBN每层神经元的个数,以确定DBN的初步结构.为了检验DBN结构的有效性,利用DBN提取的数据特征进行聚类测试,进一步根据聚类结果来修正DBN,以获取DBN的最佳结构.实验中选取Iris数据集进行聚类测试,其结果表明,通过所提出的方法获取的DBN有效结构来处理原始数据,能够提高聚类的准确性. It's difficult to determine the structure of deep belief network (DBN), so raise the method that use the wolves algorithm to determine the number of DBN per layer of neurons, and K--means Clustering Accuracy Determines whether or not to increase the hidden layer method. According to the minimal reconstruction error function of wolves algorithm, it can work out the quantity of each neuron, so as to determine the initial structure of the DBN. In order to verify the effectiveness of the DBN structure, using DBN to extract the data characteristics of the clustering test, so can get the final structure of the DBN. The Iris dataset was tested in the experiment, the results show that the proposed method handles the raw data by the effective structure of the DBN obtained and improve the accuracy of clustering.
作者 周贤泉 宋威 ZHOU Xian-quan;SONG Wei(School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第7期28-34,共7页 Microelectronics & Computer
基金 国家自然科学基金(61673193) 中央高校基本科研业务费专项资金(JUSRP51635B JUSRP51510) 江苏省自然科学基金(BK20150159)
关键词 深度信念网络 狼群算法 重构误差 聚类测试 deep belief networks wolves algorithm reconstruction error clustering test
  • 相关文献

参考文献3

二级参考文献33

  • 1段铷,张彩庆,刘爱芳.模糊聚类在电力用户分类中的应用[J].电力需求侧管理,2005,7(5):18-20. 被引量:12
  • 2苏连成,朱枫.一种新的全向立体视觉系统的设计[J].自动化学报,2006,32(1):67-72. 被引量:23
  • 3方红鹰.数据挖掘中数据预处理的方法研究[D].重庆:西南大学,2009.
  • 4Fisher R A. Iris Plants Database [Z] //http: //www. ics. uci. edu/- mlearn/MLRepository. Html. Authorized license.
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensional- ity of data with neural networks. Science, 2006, 313(5786): 504-507.
  • 6Le Roux N, Heess N, Shotton J, Winn J. Learning a gener- ative model of images by factoring appearance and shape. Neural Computation, 2011, 23(3): 593-650.
  • 7Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127.
  • 8Deng L, Abdel-Hamid O, Yu D. A deep convolutional neu- ral network using heterogeneous pooling for trading acoustic invariance with phonetic confusion. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, BC: IEEE, 2013. 6669-6673.
  • 9Deng L. Design and learning of output representations for speech recognition. In: Proceedings of the Neural Infor- marion Processing Systems (NIPS) Workshop on Learning Output Representations [Online], available: http://re- search.microsoft.com/apps/pubs/default.aspx?id=204702, July 14, 2015.
  • 10Chet C C, Eswaran C. Reconstruction and recognition of face and digit images using autoencoders. Neural Computing and Applications, 2010, 19(7): 1069-1079.

共引文献207

同被引文献54

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部