期刊文献+

智能化网格电信系统的故障预测方法 被引量:2

Intelligent fault prediction method of telecom system
下载PDF
导出
摘要 尝试用基于深度学习的相关人工智能技术,分析服务器集群上的进程和端口网络,并对网络节点进行状态预测。具体地,结合运维过程中的先验知识对网络节点的特征进行细致选择,预测网络中各个进程和端口的异常(崩溃)状态。实验结果表明,进程节点的运行信息(如CPU和内存使用率)、进程间的通信情况以及进程节点在整个网络中的结构特征对于判断该节点的状态具有一定的指导价值,而这些特征在时间维度上的变化量同样反映了进程/端口的状态。 Some approaches based on deep learning would be used to analyze the process and port network on a server duster. Specifically, the features of nodes were carefully selected in server cluster network, by eombiulng the prior knowledge from actual operations, and the abnormal state of processes or ports on the cluster was predicted. According to the research, the running information such as loads of CPU and memory, communications between processes and the structural features in the process network was valuable in predicting the states of processes and ports; furthermore, the changes of features mentioned above in the time dimension reflected the states of processes or ports, too.
作者 蔡珩 戈磊 CAI Heng;GE Lei(Shanghai Branch of China Telecom Co., Ltd., Shanghai 200042, Chin)
出处 《电信科学》 2018年第6期183-191,共9页 Telecommunications Science
关键词 故障预测 深度学习 二分类 fault prediction deep learning binary classification
  • 相关文献

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部