期刊文献+

基于图像识别的施工防护栅栏异常检测的研究 被引量:4

Study on protective fence anomaly detection in construction site based on image recognition
下载PDF
导出
摘要 在许多施工场景的安全监控中,需要及时发现防护栅栏的异常状态并进行告警。将图像识别技术应用于视频监控系统中,针对栅栏图像特有的特点,设计了基于HOG和基于深度学习的检测方法。通过实验比较分析,基于深度学习的检测方法比基于HOG的检测方法具有更高的检测精度,基于深度学习的检测方法其最高检测精度达到99.8%。合理设计深度神经网络的参数规模和网络架构,即使在无GPU的运算环境下也能达到准实时的检测需求,在无GPU的运算环境下,其对高清图像的检测速度能达到1.7s/f。 In security monitoring construction site,it is necessary to find an anomaly of protective fence and give an alarm in time.Image recognition technology is applied to video surveillance system for intelligence.The two anomaly detection methods based on HOG(Histogram of Oriented Gradient)and based on deep learning are designed according to the characteristic of a fence image.Through experimental comparison,the deep learning based method has higher detection accuracy than the HOG based method.The highest detection accuracy is up to 99.8% based on the deep learning method.Reasonable design of parameter scale and network architecture of deep neural networks can achieve near real time detection requirements even in the absence of GPU computing environment.The detection speed of high definition images can reach 1.7 s/f in the absence of GPU computing environment.
作者 侯卫东 季昆玉 贾俊 陆杰 Hou Weidong;Ji Kunyu;Jia Jun(Institute of Advanced Technology, CertusNet Inc. , Nanjing 210042, China;Taizhou Power Supply Company, Jiangsu Electric Power Company, State Grid, Taizhou 225300, China)
出处 《电子测量技术》 2018年第4期102-106,共5页 Electronic Measurement Technology
关键词 安全防护 图像识别 HOG 深度学习 CNN safety protection image recognition HOG deep learning convolutional neural network
  • 相关文献

参考文献3

二级参考文献39

  • 1张弘,卢奕南.基于内容的图像检索技术在医学领域中的应用[J].仪器仪表学报,2005,26(z2):682-685. 被引量:3
  • 2王传旭,张祥光,原春锋,刘云.基于邻域相关性和帧间连续性的前景目标分割[J].数据采集与处理,2007,22(3):288-291. 被引量:5
  • 3RASSEM T H, KHOO B E. Object class recognition using combination of color SIFT descriptors [C]. IEEE International Conference on Imaging Systems and Techniques (IST), 2011: 290-295.
  • 4XIAO P, CAI N, TANG B, et al. Efficient SIFT de- scriptor via color quantization[C]. IEEE International Conference on Consumer Electronics-China, 2014: 1-3.
  • 5ABDEL-HAKIM A E, FARAG A A. CS1FT: A SIFT descriptor with color invariant charaeteristics[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 1978-1983.
  • 6AI D, HAN X, RUAN X, et al. Adaptive color inde- pendent components based sift descriptors for image classification [C]. 20th International Conference on Pattern Recognition (ICPR), 2010 : 2436-2439.
  • 7BO L, WHANGBO T K. A SIFT-Color Moments Descriptor for Object Recognition[C]. International Conference on IT Convergence and Security (IC- ITCS), 2014: 1-3.
  • 8LOWED G. Object recognition from local scale-in- variant features[C]. IEEE international conference on Computer vision, 1999. The proceedings of the sev- enth 1999: 1150-1157.
  • 9LOWED G. Distinctive image features from scale-in- variant keypoints[J]. International journal of comput- er vision, 2004, 60(2): 91-110.
  • 10FRIEDMAN J H, BENTLEY J L, FINKEL R A.An algorithm for finding best matches in logarithmic expected time[J]. ACM,Transactions on Mathemati- cal Software (TOMS), 1977, 3(3), 209-226.

共引文献36

同被引文献40

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部