期刊文献+

分片Bernstein多项式的样条配点法求解四阶微分方程 被引量:3

Collocation Method Based on Piecewise Bernstein Polynomials for Solving Fourth-Order Differential Equations
下载PDF
导出
摘要 本文对四阶微分方程边值问题,给出一种基于分片Bernstein多项式的样条配点法求解,该格式构造过程容易理解,形成的线代数方程组系数矩阵稀疏,可用迭代法求解.数值实验表明,该方法可有效求解一般四阶线性微分方程边值问题,结合非等距配置点亦可用于求解含小参数的扰动问题. In this paper, a spline collocation method based on piecewise Bernstein polynomials is proposed for boundary values problems of fourth order differential equations. The construction of the scheme is easy to understand, and the coefficient matrix of the linear algebraic equations is sparse and can be solved by iterative method. Numerical experiments show that this method can effectively solve the boundary value problems of general fourth order linear differential equations. Combining non equidistant collocation points the method can also be used to solve the perturbational problem with small parameters.
作者 王彩华 杜金月 朱亚男 WANG Caihua;DU Jinyue;ZHU Yanan(School of Mathematical Science, Tianjin Normal University, Tianjin 300387, Chin)
出处 《应用数学》 CSCD 北大核心 2018年第3期505-512,共8页 Mathematica Applicata
基金 天津师范大学2017年杰出青年项目基金(135202TD1703)
关键词 四阶微分方程 分片Bernstein多项式 配点法 小参数扰动 Fourth-order differential equation Piecewise Bernstein polynomial Collocation methodA small parameter perturbation
  • 相关文献

参考文献2

二级参考文献22

  • 1尚亚东.带三阶粘性项的高维广义KdV-Burgers型方程组的整体解[J].甘肃科学学报,1996,8(2):1-9. 被引量:1
  • 2Bateman H. Some Recent Researches on the Motion of Fluids [J]. Monthly Weather Rev. , 1915,43 : 163-170.
  • 3Burger J M. A Mathematical Model Illustrating the Theory of Turbulence[J]. Advan. Appl. Mech. , 1948,1 : 171-199.
  • 4Hopf E. The Partial Differential Equation Ut + UUx =μUxx [J]. Comm. Pure App. Math. , 1950,3 :201-230.
  • 5Cole J D. On a Quasi-linear Parabolic Equations Occurring in Aerodynamics[J]. Quart. Appl. Math. , 1951,9 :225-236.
  • 6Ozis T,Aslan Y. The Semi-approximate Approach for Solving Burgers' Equation with High Reynolds Number[J]. Appl. Math. Comput., 2005,163: 131-145.
  • 7Abbasbandy S,Darvishi M T. A Numerical Solution of Burgers' Equation by Modified Adomian Method[J]. Appl. Math. Comput. ,2005,163:1 265-1 272.
  • 8Aksan E N,Ozdes A. A Numerical Solution of Burgers' Equation[J]. Appl. Math. Comput. , 2003,156 : 395-402.
  • 9Ozis T, Ozdes A. A Direct Variational Methods Applied to Burgers' Equation[J]. Comput. Appl. Math. , 1996, 71: 163- 175.
  • 10Aksan E N. A Numerical Solution of Burgers'Equation by Finite Element Method Constructed on the Method of Diseretization in Time[J]. Appl.Math. Comput. , 2005,170: 895-904.

共引文献1

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部