期刊文献+

一类分数阶Dirichlet边值问题解的存在性 被引量:2

Existence of Solutions for a Class of Fractional Dirichlet Boundary Value Problems
下载PDF
导出
摘要 本文研究分数阶Dirichlet边值问题,通过引入控制函数,利用临界点理论,当?F(t,x)在无穷远处不超过线性增长时,得到上述问题解的存在性,获得了一些新的存在性结果. This article investigates the kind of fractional Dirichlet boundary value problem. By introducing control functions and using critical point theory, we obtain the new existence results of solutions for the above problem, when the nonlinearity ?F(t, x) grows less than |x| at infinity.
作者 李姗姗 王智勇 LI Shanshan;WANG Zhiyong(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)
出处 《应用数学》 CSCD 北大核心 2018年第3期548-558,共11页 Mathematica Applicata
基金 国家自然科学基金(11571176 11701289) 江苏省青年基金(BK20170936)
关键词 分数阶边值问题 鞍点定理 极小作用原理 控制函数 Fractional boundary value problem Saddle point theorem The least action principleControl function
  • 相关文献

参考文献2

二级参考文献31

  • 1Mawhin J, Willem M. Critical Point Theorey and Hamiltonian Systems. New York: Springer-Verlag, 1989.
  • 2Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, American Mathematical Society, 65,1986.
  • 3Miller K S, Ross B. An introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
  • 4Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier B.V., 2006.
  • 5Zhou Y. Advance in fractional differential equations (I). Computers and Mathematics with Applications, 2010, 59: 1047-1376.
  • 6Zhou Y. Advance in fractional differential equations (11). Computers and Mathematics with Applications, 2011, 62: 821-1618.
  • 7Zhou Y. Advance in fractional differential equations (III). Computers and Mathematics with Applications, 2012, 64: 2965-3484.
  • 8Fix G J, Roop J P. Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl., 2004, 48: 1017-1033.
  • 9Ervin V J, Roop J P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations, 2006, 22: 58-76.
  • 10Jiao F, Zhou Y. Existence of solutions for a class of fractional boundary value problem via critical point theory. Comput. Math. Appl., 2011, 62: 1181-1199.

共引文献6

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部