期刊文献+

非线性Benjamin-Bona-Mahony方程一个新的低阶混合元方法(英文) 被引量:2

A New Low Order Mixed FEM for Nonlinear Benjamin-Bona-Mahony Equation
下载PDF
导出
摘要 基于双线性元和零阶R-T元,建立了非线性Benjamin-Bona-Mahony(BBM)方程的一个新的低阶混合元方法.借助积分恒等式技巧,得到了一个对超逼近分析比较重要的误差估计.对于半离散格式,证明了解的存在性,唯一性和稳定性,然后得到了精确解u在H1模意义下和压力变量p=?u_t在L^2模意义下具有O(h^2)的超逼近和超收敛结果.对于向后欧拉和Crank-Nicolson全离散格式,分别探讨了解的稳定性,且在对时间步长没有任何限制的前提下得到了超逼近结果. A new low order mixed finite element method(FEM) is proposed for solving nonlinear Benjamin-Bona-Mahony(BBM) equation based on bilinear element and zero order Raviart-Thomas(R-T) element. Applying integral identity technique, an important estimate is proved which is useful for the superclose analysis. For semi-discrete scheme,the existence, uniqueness, stability of the solution are discussed. Then, the superclose properties and global superconvergence results with order O(h2) are deduced for both the exact solution u in H1-norm and the stress variable ?p = ?ut in L2-norm. For backward Euler and Crank-Nicolson fully-discrete schemes, the stability of the solution is discussed and the superclose results are derived without any time-step restriction, respectively.
作者 史艳华 王芬玲 赵艳敏 SHI Yanhua;WANG Fenling;ZHAO Yanmin(School of Mathematics and Statistics, Xuchang University, Xuchang 461000, China)
出处 《应用数学》 CSCD 北大核心 2018年第3期638-652,共15页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11101381) the Natural Foundation of Education Department of Henan Province(17A110011)
关键词 BBM方程 混合元方法 半离散和全离散格式 超逼近和超收敛 BBM equation Mixed FEM Semi-discrete and fully-discrete scheme Superclose and superconvergence
  • 相关文献

参考文献4

二级参考文献27

共引文献62

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部