摘要
基于双线性元和零阶R-T元,建立了非线性Benjamin-Bona-Mahony(BBM)方程的一个新的低阶混合元方法.借助积分恒等式技巧,得到了一个对超逼近分析比较重要的误差估计.对于半离散格式,证明了解的存在性,唯一性和稳定性,然后得到了精确解u在H1模意义下和压力变量p=?u_t在L^2模意义下具有O(h^2)的超逼近和超收敛结果.对于向后欧拉和Crank-Nicolson全离散格式,分别探讨了解的稳定性,且在对时间步长没有任何限制的前提下得到了超逼近结果.
A new low order mixed finite element method(FEM) is proposed for solving nonlinear Benjamin-Bona-Mahony(BBM) equation based on bilinear element and zero order Raviart-Thomas(R-T) element. Applying integral identity technique, an important estimate is proved which is useful for the superclose analysis. For semi-discrete scheme,the existence, uniqueness, stability of the solution are discussed. Then, the superclose properties and global superconvergence results with order O(h2) are deduced for both the exact solution u in H1-norm and the stress variable ?p = ?ut in L2-norm. For backward Euler and Crank-Nicolson fully-discrete schemes, the stability of the solution is discussed and the superclose results are derived without any time-step restriction, respectively.
作者
史艳华
王芬玲
赵艳敏
SHI Yanhua;WANG Fenling;ZHAO Yanmin(School of Mathematics and Statistics, Xuchang University, Xuchang 461000, China)
出处
《应用数学》
CSCD
北大核心
2018年第3期638-652,共15页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11101381)
the Natural Foundation of Education Department of Henan Province(17A110011)