摘要
本文运用矩阵多元多项式的带余除法把双参数弹性地基上正交各向异性矩形薄板的振动方程转化为Hamilton系统,利用分离变量给出对应的Hamilton算子.通过计算得到对边简支问题所对应Hamilton算子的本征值和本征函数系,并证明了该本征函数系的辛正交性和在Cauchy主值意义下的完备性.根据本征函数系的完备性,得到对应Hamilton系统的通解,进而给出双参数弹性地基上正交各向异性矩形薄板对边简支振动问题振型函数的通解.此外,通过两个例子说明此方法可以计算出自由振动问题的频率和振型函数.
In this paper, the free vibration equations of orthotropic rectangular thin plates are transformed into Hamiltonian system by using pseudo-division algorithm for matrix multi-variable polynomial.And Hamiltonian operators are obtained by means of separation of variables method. By calculating,the eigenvalues and eigenvectors of the Hamiltonian operators for the problem with two opposites simply supported are derived. Then, the symplectic orthogonality and the completeness of the eigenvectors(in the sense of Cauchy's principal value) are proved. Based on the completeness of the eigenvectors, the general solutions of the Hamiltonian systems are obtained and the general solutions of orthotropic rectangular thin plates on two-parameters elastic foundation with two opposites simply supported can be obtained.Furthermore, two examples are given to illustrate that the frequency and deflection of the free vibration problems are directly solved by the present method.
作者
赵琴
额布日力吐
ZHA O Qin;Eburilitu(School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China)
出处
《应用数学》
CSCD
北大核心
2018年第3期674-682,共9页
Mathematica Applicata
基金
国家自然科学基金项目(11362011
11761052)