摘要
本文考虑了一类具有标准发生率和信息干预的随机SIRS传染病模型.定义了一个停时,通过构造适当的Lyapunov函数证明了停时为无穷大,从而证明了该模型唯一正解的全局存在性.通过构造紧集和适当的Lyapunov函数,证明模型解的平稳分布的存在性及其遍历性.此外还证明了疾病的灭绝性.
In this paper, we consider a novel stochastic SIRS epidemic model with standard incidence incorporating information intervention. We first define a stopping time. Then the existence of a unique global positive solution is proved by constructing a suitable Lyapunov function to prove the stopping time is infinite. The stationary distribution and ergodicity of the model are showed by constructing a compact set and appropriate Lyapunov function. It is also proved that the extinction of the disease.
作者
赵英英
胡华
ZHAO Yingying;HU Hua(School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)
出处
《应用数学》
CSCD
北大核心
2018年第3期704-713,共10页
Mathematica Applicata
基金
国家自然科学基金项目(11361044)
宁夏自治区研究生教育创新计划项目(YKC201709)
宁夏大学研究生创新项目(GIP2017047)
关键词
SIRS传染病模型
信息干预
灭绝性
平稳分布
遍历性
SIRS epidemic model
Information intervention
Extinction
Stationary distribution
Ergodicity