期刊文献+

面向井下改进分布式粒子滤波跟踪算法研究 被引量:1

Research on Improved Distributed Particle Filter Tracking Algorithm for Coal Mine
下载PDF
导出
摘要 基于煤矿井下复杂环境,无线传感器网络节点能量有限且易于布放的特点,提出了一种面向煤矿井下改进分布式粒子滤波目标跟踪算法。在动态分簇的基础上利用粒子滤波对目标跟踪。仿真结果表明,与传统分簇算法比较,改进算法可以降低节点的冗余度,降低能耗。同时将改进分簇算法与粒子滤波跟踪算法结合,集中了2种算法的优点,在保证跟踪精度的前提下延长网络的生存周期,且满足煤矿井下的目标跟踪要求。 Based on the complex environment of coal mine and the limited energy and easy layout of wireless sensor network nodes, an improved distributed particle filter target tracking algorithm for coal mine is proposed. On the basis of dynamic clustering, particle tracking is used to track the target. The simulation results show that compared with the traditional clustering algorithm, the improved algorithm can reduce the redundancy of nodes and reduce the energy consumption. At the same time, the improved clustering algorithm is combined with the particle filter tracking algorithm, which concentrates the advantages of the two algorithms, and extends the life cycle of the network under the premise of ensuring the tracking precision and satisfies the target tracking requirement under the coal mine.
作者 崔丽珍 岑晓男 邬嵩 CUI Li-zhen;CEN Xiao-nan;WU Song(Inner Mongolia University of Science and Technology, Baotou 014010, China)
机构地区 内蒙古科技大学
出处 《煤炭技术》 CAS 2018年第7期224-226,共3页 Coal Technology
基金 国家自然科学基金项目(61761038) 内蒙古自治区科技计划项目(201502013-1) 内蒙古自治区自然科学基金项目(2015MS0623)
关键词 无线传感器网络 井下跟踪 分布式 分簇 粒子滤波 wireless sensor network underground tracking distributed clustering particle filter
  • 相关文献

参考文献3

二级参考文献23

  • 1陈小民,蒋兴舟.确定无线传感器网络节点配置数目的一种方法[J].武汉科技大学学报,2005,28(1):78-81. 被引量:7
  • 2邹冈,石章松,刘忠.传感器网络中的分布式粒子滤波被动跟踪算法比较研究[J].传感技术学报,2007,20(6):1344-1348. 被引量:8
  • 3杨维,周嗣勇,乔华.煤矿安全监测无线传感器网络节点定位技术[J].煤炭学报,2007,32(6):652-656. 被引量:48
  • 4Kwok C, Fox D, and Meila M. Real-time particle filters [J]. Proce. IEEE, 2004, 92(3): 469-484.
  • 5Arulampalam S, Maskell S, Gordon N J, and Clapp T. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking[J]. IEEE Trans. on Signal Processing, 2002, 50(2): 174-188.
  • 6Yoshinori Satoh, Takayuki Okatani, and Koichiro Deguchi. A color-based tracking by kalman particle filter [C]. IEEE Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom. 2004: 502-505.
  • 7Zhou S K, Chellappa R, and Moghaddam B. Visual tracking and Recognition using appearance-adaptive models in particle filters [J]. IEEE Trans. on Image Processing, 2004, 13 (11): 1491-1506.
  • 8Koichiro Deguchi, Oki Kawanaka, and Takayuki Okatani. Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm [C]. Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, United Kingdom, 2004: 506-509.
  • 9Jia J P, Wang Q, and Chai Y M. Object tracking by multidegrees of freedom mean shift procedure combined with the Kalman particle filter algorithm [C]. Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian, China, 2006: 3793-3797.
  • 10Kailath T. The Divergence, Bhattacharyya distance measures in signal selection [J]. IEEE Trans. on Comm. Technology, 1999, 15(2): 253-259.

共引文献20

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部