期刊文献+

基于无人机高光谱影像的地表植被生物量反演波段优选 被引量:3

Bands selection for retrieving crop parameters based on UAV hyper-spectral
下载PDF
导出
摘要 针对高光谱数据冗余信息多,在实际应用存在诸多不便的特点,开展了无人机高光谱的波段优选研究。通过采集地面作物的生物量与构建的归一化植被指数(NDVI)进行线性回归分析,构建波段二维分布图来可视化优选的波段。结果表明,在使用NDVI反演生物量时(决断系数大于0.8),最佳波段主要位于820nm和725-750nm。此外,使用的高光谱相机在波长为890nm附近信噪比较低,拟合的决断系数较低。 The redundancy information of the hyper-spectral data makes it is not an easy using data source in practice.In this study,bands selection for retrieving crop parameters based on UAV hyper-spectral was done.A linear model was established between winter wheat biomass and the Normalized Vegetation Index(NDVI),and the two-dimensional distribution of band was drawn to visualized band selection.The result shown that the best bands were mainly distributed at 820 nm and 725 nm to 750 nm when using NDVI to retrieve the biomass(the determination coefficient is greater than 0.8).Besides,for the high spectral camera bands which the wavelength greater than 890 nm present a low signal to noise ratio(SNR),this decresed the fitting coefficient.
作者 夏浪 张瑞瑞 陈立平 文瑶 伊铜川 Xia Lang;Zhang Ruirui;Chen Liping;Wen Yao;Yi Tongchuan(Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China;National Center for International Research on Agricultural Aerial Application Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China)
出处 《电子测量技术》 2018年第9期87-90,共4页 Electronic Measurement Technology
基金 国家自然科学基金(31601228) 北京市自然科学基金(6164032) 北京市科技新星计划(2018106)项目资助
关键词 高光谱 农情参数 波段优选 hyper-spectral agricultural parameters band selection
  • 相关文献

参考文献4

二级参考文献61

共引文献164

同被引文献44

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部