期刊文献+

Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition 被引量:1

Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition
原文传递
导出
摘要 Silver nanoparticles (AgNPs) with distinct localized surface plasmon resonance (LSPR) absorption spectra can be synthesized using different proteins as templates upon irradiation by light. We utilized the multiple readouts of LSPR signals of AgNPs to construct sensor arrays for pattern recognition of proteins. Room temperature, aqueous solutions, and lack of harsh reducing reagents make the whole process inherently "green". Meanwhile, the strategy efficiently simplified the process of array-receptor preparation and data acquisition, leading to lower time consumption, sample use, and cost. Furthermore, the system can differentiate proteins using flexible and alterable sensor elements by choosing different combinations of LSPR signals at different wavelengths. The principle of the sensor design can also be further extended to differentiate other biomolecules. The study provides a new method to construct feasible, economical, and general nanoparficle-based sensing arrays for pattern recognition. Silver nanoparticles (AgNPs) with distinct localized surface plasmon resonance (LSPR) absorption spectra can be synthesized using different proteins as templates upon irradiation by light. We utilized the multiple readouts of LSPR signals of AgNPs to construct sensor arrays for pattern recognition of proteins. Room temperature, aqueous solutions, and lack of harsh reducing reagents make the whole process inherently "green". Meanwhile, the strategy efficiently simplified the process of array-receptor preparation and data acquisition, leading to lower time consumption, sample use, and cost. Furthermore, the system can differentiate proteins using flexible and alterable sensor elements by choosing different combinations of LSPR signals at different wavelengths. The principle of the sensor design can also be further extended to differentiate other biomolecules. The study provides a new method to construct feasible, economical, and general nanoparficle-based sensing arrays for pattern recognition.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3213-3221,共9页 纳米研究(英文版)
关键词 localized surface plasmon resonance silver nanoparticles pattern recognition BIOMOLECULE photochemical synthesis localized surface plasmon resonance silver nanoparticles pattern recognition biomolecule photochemical synthesis
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部