期刊文献+

Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel 被引量:3

Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel
原文传递
导出
摘要 Enabling Si photoanodes for efficient solar water oxidation would facilitate the development of solar fuel conversion, but it is challenging owing to Si surface passivation via photo-induced corrosion in aqueous electrolytes. To overcome this challenge, most approaches have focused on improving the stability of Si by coating dense and thin protective layers using high vacuum-based techniques such as atomic layer deposition. However, these procedures are costly, making scalability for practical applications difficult. Herein, we report a modified electroless deposition (ELD) method to uniformly deposit protective and catalytic Ni films on Si wafers, resulting in efficient and stable Si photoanodes for solar water oxidation. The optimized Ni/n-Si photoanode achieves an onset potential of -1.09 V vs. a reversible hydrogen electrode and a saturation current density of -27.5 mA/cm^2 under AM 1.5 G illumination at pH 14. The ELD method is additionally capable of Ni deposition on a 4-inch n-Si wafer, demonstrating the first 4-inch Si photoanode. The solar water oxidation of the ELD-Ni/n-Si photoanode can be further improved by surface texturing, built-in n-p junctions, or coupling with more efficient catalysts. Enabling Si photoanodes for efficient solar water oxidation would facilitate the development of solar fuel conversion, but it is challenging owing to Si surface passivation via photo-induced corrosion in aqueous electrolytes. To overcome this challenge, most approaches have focused on improving the stability of Si by coating dense and thin protective layers using high vacuum-based techniques such as atomic layer deposition. However, these procedures are costly, making scalability for practical applications difficult. Herein, we report a modified electroless deposition (ELD) method to uniformly deposit protective and catalytic Ni films on Si wafers, resulting in efficient and stable Si photoanodes for solar water oxidation. The optimized Ni/n-Si photoanode achieves an onset potential of -1.09 V vs. a reversible hydrogen electrode and a saturation current density of -27.5 mA/cm^2 under AM 1.5 G illumination at pH 14. The ELD method is additionally capable of Ni deposition on a 4-inch n-Si wafer, demonstrating the first 4-inch Si photoanode. The solar water oxidation of the ELD-Ni/n-Si photoanode can be further improved by surface texturing, built-in n-p junctions, or coupling with more efficient catalysts.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3499-3508,共10页 纳米研究(英文版)
关键词 Ni deposition electroless plating Si photoanode oxygen evolution reaction (OER) photoelectrochemical water splitting Ni deposition electroless plating Si photoanode oxygen evolution reaction (OER) photoelectrochemical water splitting
  • 相关文献

参考文献1

同被引文献22

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部