期刊文献+

六年级学生对高阶概率内容的认知:潜能与局限 被引量:7

Sixth Graders’ Cognition of High-Level Probability: Potential and Limitations
下载PDF
导出
摘要 以64名六年级学生为被试,考察其在直观图示下对高阶概率内容的认知.结果表明,学生在"理论计算"任务上的表现差强人意,暴露出两类典型错误;"理论计算"能力是"数量估计"的先决条件,但对随机性的认知在此过程中也不可或缺;学生的概率直觉在"数量估计"任务中扮演着重要角色.对概率教学的启示和建议有:学生高阶概率内容认知的潜能与局限并存;教学应呵护学生的概率直觉,可通过计算机等直观模拟技术渗透概率思维. This study selected 64 sixth graders as the subjects and explored their understanding of high-level probability in schema-based tasks. The results showed that, sixth graders' performance on calculation of theoretical probability were basically good but they also exhibited two typical erroneous cognition; their ability on calculation of theoretical probability was the prerequisite of probability evaluation but it their cognition of randomness was still necessary during this process; their probability intuition played important role in finishing probability calculation tasks. Implications and suggestions for mathematics education were: students' cognition of high-level probability in schema-based tasks exhibited some potentials accompanied with limitations; teachers should respect students' probability intuition and protect their good cognition of randomness, and cultivate their probability thinking by technology and other vivid ways.
作者 何声清 HE Sheng-qing(Faculty of Education, Beijing Normal University, Beijing 100875, China)
出处 《数学教育学报》 CSSCI 北大核心 2018年第3期57-61,共5页 Journal of Mathematics Education
基金 北京师范大学未来教育高精尖创新中心项目——中学数学学科诊断分析工具开发与应用研究(BJAICFE2016SR-008)
关键词 六年级 概率认知 直观图示 条件概率 积事件概率 6th graders probability cognition schema-based tasks conditional probability
  • 相关文献

参考文献12

二级参考文献64

  • 1钟志华.数学理解的类型[J].数学教学研究,2007,26(10):2-3. 被引量:5
  • 2杨骞.加涅的学习理论在数学教学中的应用[J].全球教育展望,1987,18(5):43-49. 被引量:1
  • 3贾丕珠.函数学习中的六个认知层次[J].数学教育学报,2004,13(3):79-81. 被引量:25
  • 4周宇峰,魏法杰.一种综合评价中确定专家权重的方法[J].工业工程,2006,9(5):23-27. 被引量:22
  • 5李士锜.熟能生巧吗[J].数学教育学报,1996,(3).
  • 6Stein M K, Smith M S. Mathematical Tasks as a Framework for Reflection: From Research to Practice [J]. Mathematics Teaching in the Middle School, 1998, (3): 268-275.
  • 7Biggs J B, Collis K F. Evaluating the Quality of Learning: The SOLO Taxonomy [M]. New York: Academic Press, 1982.
  • 8Hiebert,J.& Carpenter, T.P. Teaching and Learning Mathematic with Understanding. In D.A. Grouws (Ed.) Handbook of Research on Mathematics Teaching and Learning. New York: Macmillan.1992.65-100.
  • 9Anderson,J.R.,& Schunn,C.D. Implication of the ACT-R Learning Theory : No Magic Bullets. In Glaser, R. (Ed.),Advance in Instructional Psycology,Vol.5.Mahwah,NJ:Erlbaum. 2000.1-27.
  • 10Post,T.,& Reys,R.E. Abstraction Generalization and Design of Mathematical Experiences for Children. In K. Fuson & W. Geeslin (Eds.), Models for Mathematics Learning. Columbus, OH: ERIC/SMEAC.1979.117-139.

共引文献296

同被引文献93

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部