期刊文献+

基于压缩感知尺度自适应的多示例交通目标跟踪算法 被引量:5

Traffic Target Tracking Algorithm Based on Scale Adaptive Multiple Instance Learning with Compressive Sensing
原文传递
导出
摘要 针对大多数跟踪算法对车辆等交通目标在行驶过程中的尺度变化、姿态变化的适应性差及在跟踪过程中使用固定尺度的跟踪框,导致所构造的目标模板包含大量背景信息,引起跟踪漂移甚至丢失的问题,提出一种基于压缩感知理论与超像素目标性度量的尺度自适应多示例交通目标跟踪算法,该算法首先利用压缩感知理论对多示例学习中的特征维数进行降维,减少算法计算的复杂度。其次,采用超像素目标性度量进行局部尺度自适应调整,解决多示例跟踪算法中的尺度适应问题。此外,引入基于目标判别机制的分类器更新,利用连续帧中目标的相似性判断跟踪目标是否存在遮挡或漂移问题。依据目标判别的结果,实现变学习率的分类器参数更新。试验结果表明:该方法具有较高的跟踪精度和良好的跟踪鲁棒性,在车辆目标发生遮挡、尺度变化、三维旋转等情况时均能较好地跟踪目标,通过对不同的交通视频序列进行测试,算法的平均中心位置误差远小于对比算法,仅为3.92像素,其对比算法CT跟踪、MIL跟踪及WMIL跟踪算法的平均位置误差分别为56.96像素、35.36像素及58.54像素,平均重叠率达80.1%,较CT跟踪、MIL跟踪及WMIL跟踪算法分别高44.9%、45.3%和45%,满足智能交通监控的实际需求。 This paper aims to solve the problem that most existing tracking algorithms have poor adaptability in the process of tracking a traffic target with scale and pose changes and use a fixedsize tracking box to track the target,which results in the target template containing a lot of background information and causing tracking drift or failure.In this paper,a traffic target tracking algorithm based on scale adaptive multiple instance learning with compressive sensing theory and a superpixel objectness measure is proposed.Firstly,compressive sensing theory is used to reduce the feature dimension in multiple instance learning,thus reducing the computational complexity of the algorithm.Secondly,local scale adaptive adjustment is carried out by using the superpixel objectness measure to solve the scale adaptation problem in themultiple instance tracking algorithm.In addition,a target identification mechanism with variable learning rate is introduced to update the classifier parameters,and the occlusion or drift of the tracked target is judged by the similarity of the target in the continuous frame.According to the result of target identification,the classifier parameters are updated with the variable learning rate.The experimental results show that the proposed tracking algorithm has good robustness and high tracking accuracy under complex environments with vehicle occlusion,scale change,and three-dimensional rotation.Compared with CT,MIL,and WMIL trackers for the test traffic video sequences,the average center position error in test videos is far smaller,at only 3.92 pixels;the error in CT,MIL,and WMIL is 56.96 pixels,35.36 pixels,and 58.54 pixels,respectively.The average overlap rate of the proposed method is 80.1%,while that of CT,MIL,and WMIL is 44.9%,45.3%,and 45%,respectively,which meets the real application of intelligent traffic monitoring.
作者 杨红红 曲仕茹 YANG Hong-hong;QU Shi-ru(School of Automation, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China)
出处 《中国公路学报》 EI CAS CSCD 北大核心 2018年第6期281-290,316,共11页 China Journal of Highway and Transport
基金 教育部高等学校博士学科点专项科研基金项目(20096102110027) 航天科技创新基金项目(CASC201104) 航空科学基金项目(2012ZC53043)
关键词 交通工程 智能交通 压缩感知 超像素 尺度自适应 交通目标跟踪 traffic engineering intelligent traffic compressive sensing superpixel scale adap-tive traffic target tracking
  • 相关文献

参考文献5

二级参考文献65

  • 1简林莎,段宗涛,周兴社.智能运输系统信息平台[J].长安大学学报(自然科学版),2006,26(2):81-83. 被引量:8
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3杨卫莉,郭雷.基于分水岭算法和图论的图像分割[J].计算机工程与应用,2007,43(7):28-30. 被引量:15
  • 4MAGEE D R. Tracking Multiple Vehicles Using Foreground,Background and Motion Models[J]. Image and Vision Computing, 2004,22 (2) : 143-155.
  • 5TAI J, TSENG S, LIN C, et al. Real-time Image Tracking for Automatic Traffic Monitoring and Enforcement Applieations [J]. Image and Vision Computing, 2004,22(6 ) : 485-501.
  • 6ZHU Z,XU G,YANG B,et al. VISATRAM:a Real- time Vision System for Automatic Traffic Monitoring[J].Image and Vision Computing, 2000, 18 (10):781-794.
  • 7OTTLIK A, NAGEL H H. Initialization of Modelbased Vehicle Tracking in Video Sequences [J]. International Journal of Computer Vision, 2008, 80 (2) :211-225.
  • 8DAHLKAMP H,NAGEL H H,OTTLIK A,et al.A Framework for Model-based Tracking Experiments in Image Sequences[J]. International Journal of Computer Vision, 2007,73(2) : 139-157.
  • 9COMANICIU D, MEER P. Mean Shift: a Robust Approach Toward Feature Space Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 10KOTECHA J H,DJURIC P M. Gaussian Sum Particle Filtering [J]. IEEE Transactions on Signal Processing, 2003,51 (10) : 2602-2612.

共引文献43

同被引文献39

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部