期刊文献+

电导率对厌氧产酸、正渗透与微生物燃料电池耦合工艺运行性能的影响

Effects of Conductivity on Performance of a Combined System of Anaerobic Acidification,Forward Osmosis,and a Microbial Fuel Cell
原文传递
导出
摘要 将厌氧产酸(AA)、正渗透技术(FO)与微生物燃料电池(MFC)进行耦合,构建了用于污水处理的AAFO-MFC耦合工艺,实现污水的同步产电和回用.由于电导率是AAFO-MFC运行的关键因素,考察了电导率对系统运行性能的影响.结果表明,较高的电导率可以降低MFC的内阻,提高产电,但是会加重FO膜污染,导致FO膜通量快速衰减,缩短运行时间.电导率对出水水质并没有显著影响,FO膜出水的总有机碳(TOC)和总磷(TP)浓度分别低于4 mg·L^(-1)和0.5 mg·L^(-1),但是FO膜对于氨氮(NH+4-N)的截留效果较差.控制反应器内电导率为7~8 m S·cm-1时,系统整体性能表现最佳,可以获得连续且相对稳定的输出电压,而且FO膜通量下降较为缓慢,运行周期达到29 d. In this study,a novel combined system for simultaneous recovery of bioelectricity and water from wastewater was developed by integrating anaerobic acidification and a forward osmosis( FO) membrane with a microbial fuel cell( AAFO-MFC). Conductivity was thought to be an important factor affecting the performance of the AAFO-MFC system. Thus,effects of conductivity on the performance of AAFO-MFC system in treating synthetic wastewater were investigated. The results indicated that a higher conductivity increased the bioelectricity production,owing to a reduction in the internal resistance. However,it resulted in a rapid decrease of FO water flux and a shorter operating time because of a severer membrane fouling. The conductivity had no impact on the water quality of the effluents. The total organic carbon( TOC) and total phosphorus( TP) concentrations in the FO permeate were less than 4 and 0. 5 mg·L^-1,respectively,at all conductivity levels. However,the rejection of the FO membrane for NH+4-N was lower at all conductivity levels. The optimal comprehensive performance of this system was obtained when the conductivity was maintained at 7-8 m S·cm^-1. In this case,the AAFO-MFC system achieved continuous and relatively stable power generation,and the water flux of FO membrane was relatively stable during a long-term operation of approximately 29 days.
作者 陆宇琴 刘金梦 王新华 李秀芬 李晔 LU Yu-qin;LIU Jln-meng;WANG Xin-hua;LI Xiu-fen;LI Ye(Jiangsu Key Laboratory of Anaerobic Bioteehnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;Zhejiang Huanke Engineering Design Co. , Ltd. , Hangzhou 310007, China)
出处 《环境科学》 EI CAS CSCD 北大核心 2018年第7期3240-3246,共7页 Environmental Science
基金 国家自然科学基金项目(51578265)
关键词 电导率 微生物燃料电池 正渗透 产电 污水处理 conductivity microbial fuel cell forward osmosis bioelectricity production wastewater treatment
  • 相关文献

参考文献2

二级参考文献36

  • 1刘秀红,王淑莹,高大文,杨庆,吴凡松.短程硝化的实现、维持与过程控制的研究现状[J].环境污染治理技术与设备,2004,5(12):7-10. 被引量:33
  • 2尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790. 被引量:53
  • 3祝学远,冯雅丽,李少华,李浩然,杜竹玮,罗小兵.单室直接微生物燃料电池的阴极制作及构建[J].过程工程学报,2007,7(3):594-597. 被引量:10
  • 4Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. J Water Pollut Control Fed, 1976, 48 (5) : 835-852.
  • 5Kim D J, Lee D I, Keller J. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH [ J ]. Bioresource Tech,2006, 97(3) :459-468.
  • 6Vadivelu V M, Yuan Z G, Fux C, et al. The inhibitory effects of Free nitric acid on the energy generation and growth process of an enriched Nitrobactor culture [ J ]. Biotechnol and Bioeng, 2006, 40 (14) :4442-4448.
  • 7chobanoglous G, Burton F B, Stensel H D. Wastewater engineering treatment and reuse [M]. ( Fourth Edition). USA: McGraw-Hill Companies, 2003.
  • 8Turk O, Mavinei D S. Selective inhibition: a novel concept for removing nitrogen from highly nitrogenous wastes [J].Environ Tech Lett, 1987, 8: 419-426.
  • 9Fux C, Lange K, Faessler A, et al. Nitrogen removal from digester supematant via nitrites in SBR or SHARON [ J]. Wat Sci Tech, 2003, 48(8): 9-18.
  • 10APHA. Standard method for the examinalion of water and wastewater [M]. (19th edition). Washington, DC: American Public Health Association, 1995.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部