摘要
Ice adhesion to materials is a significant concern in many fields. Hydrophobic surface has been used for anti-icing in fields of aircraft or transmission line, which prove to be efficacious and economical. However, such technique is seldom employed for road deicing, because of the texture and service environment of pavement. Instead, deicers such as rock salt are frequently used, which leads to serious corrosion problem of roads and bridges. In this paper, a number of studies that characterize mechanism of ice adhesion to common substrates, specifically to pavement, are reviewed. The most important researches undertaken on ice adhesion strength affecting factors are presented. An overview of studies carried out to find hydrophobie surface for asphalt and cement concrete pavement antiicing are presented. It was verified that the hydrophobicity had high correlation with icephobicity, and nano-engineered asphalt and cement concrete pavement surface exhibited favorable hydrophobicity, and also had good performance on weakening pavement-ice bonding. However, most ice-repelling pavements obtain hydrophobic surface via low surface energy coating, which could not exist on pavement for a long time under wheel abrasion. And the nano/micro structures on hydrophobic surfaces are also vulnerable and consumable. Thus, the long-term effect of hydrophobic surface still need to be improved, and durability of the hydrophobic surface should be the research and development priorities of ice-repelling pavement.
Ice adhesion to materials is a significant concern in many fields. Hydrophobic surface has been used for anti-icing in fields of aircraft or transmission line, which prove to be efficacious and economical. However, such technique is seldom employed for road deicing, because of the texture and service environment of pavement. Instead, deicers such as rock salt are frequently used, which leads to serious corrosion problem of roads and bridges. In this paper, a number of studies that characterize mechanism of ice adhesion to common substrates, specifically to pavement, are reviewed. The most important researches undertaken on ice adhesion strength affecting factors are presented. An overview of studies carried out to find hydrophobie surface for asphalt and cement concrete pavement antiicing are presented. It was verified that the hydrophobicity had high correlation with icephobicity, and nano-engineered asphalt and cement concrete pavement surface exhibited favorable hydrophobicity, and also had good performance on weakening pavement-ice bonding. However, most ice-repelling pavements obtain hydrophobic surface via low surface energy coating, which could not exist on pavement for a long time under wheel abrasion. And the nano/micro structures on hydrophobic surfaces are also vulnerable and consumable. Thus, the long-term effect of hydrophobic surface still need to be improved, and durability of the hydrophobic surface should be the research and development priorities of ice-repelling pavement.
基金
the financial support from the Special Fund for Basic Scientific Research of Central Colleges, Changan University (310831151080, 310831153409, 310831153315 and 310831151085)
Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ2025)
Xi'an Science and Technology Planning Project (2017137SF/WM031)
Transportation Construction & Technology Project of Shanxi Department of Transportation (No. 16-2-12)