期刊文献+

卷积神经网络在物体检测方面的应用 被引量:1

The applicationof convolutional neural network in object detection
下载PDF
导出
摘要 深度学习的应用越来越广泛,而且在图像处理方面有着很好的效果。而其中的卷积神经网络(convolutional neural network,CNN)就是一个很好的应用典型,虽然卷积神经网络在特征提取方面有很大的优势,并且也取得了不错的效果。但是在某些具体的检测任务,卷积神经网络(convolutional neural network,CNN)会面临如何处理在图像提取特征的时候,如何保证特征不畸变的问题。本文将通过对卷积神经网络模型的改进来进一步分析如何处理这个问题。实验结果表明,我们提出的多特征池化层能够很好地改善CNN的这一不足。 The application of deep learning is more and more extensive and has a good effect on image processing? While the convolutional neural network(convolutional neural network, CNN) is a typical application,although the convolution neural network has a great advantage in feature extraction, it also has a good effect? But in some specific testing tasks, convolution neural network(convolutional neural network, CNN) will face how to deal with at the time of image feature extraction, how to ensure the characteristic distortion problem? This paper will further analyze how to deal with this problem by improving the convolution neural network model? The experimental results show that the multi-feature pooling layer can improve CNN’s deficiency?
作者 牛伯浩 Niu Bohao(Ningxia university School of information engineering,Yinchuan Ningxia , 750021)
出处 《电子测试》 2018年第9期72-73,共2页 Electronic Test
关键词 深度学习 卷积神经网络 物体检测 计算机视觉 deep learning Convolutional neural network Object detection Computer vision
  • 相关文献

参考文献1

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部