期刊文献+

基于视觉传达的警示标志识别方法 被引量:3

Warning signs recognition method based on visual communication
下载PDF
导出
摘要 针对当前警示标志识别正确率低、识别速度慢等不足,提出基于视觉传达的警示标志识别方法。首先提取警示标志识别的一些特征,然后结合人的视觉传达感知设计一些规则,最后采用神经网络实现警示标志识别,并通过具体实验测试该方法的有效性和优越性。测试结果表明,所提方法提高了警示标志识别的正确率,有效改善了警示标志识别的速度,而且警示标志识别效果明显优于当前其他警示标志识别方法。 Aiming at the shortcomings of low recognition accuracy and slow recognition speed of warning signs,a warning signs identification method based on visual communication is proposed. The characteristics of warning signs recognition are extracted,and combined with the human′ s visual perception to design some rules. And then the neural network is used to realize the warning signs identification. The effectiveness and superiority of the method were verified with specific test. The test results show that the method can improve the recognition accuracy and recognition speed of the warning signs,and its recognition effect is better than that of other warning signs recognition methods.
作者 黄有望 白新国 HUANG Youwang;BAI Xinguo(College of Apparel & Design,Xi’an Polytechnic University,Xi’an 710048,China;College of Computer Science,Xi’an Polytechnic University,Xi’an 710048,China)
出处 《现代电子技术》 北大核心 2018年第11期129-132,共4页 Modern Electronics Technique
基金 陕西省教育厅2017自然专项项目资助(17JK0331)~~
关键词 视觉传达 警示标志 识别方法 识别正确率 识别速度 神经网络 visual communication warning sign identification method recognition accuracy recognition speed neural network
  • 相关文献

参考文献6

二级参考文献82

  • 1初秀民,严新平,毛喆.道路标志图案识别方法研究[J].汽车工程,2006,28(11):1051-1055. 被引量:8
  • 2GB5768-1999《道路交通标志和标线》使用手册(修订版),国标,中国标准出版社.2007-8-1.
  • 3G. PICCIOLI, E. DE MICHELI, P. PARODI, M. CAMPANI. Robust method for road sign detection and recognition. Elsevier Science Image and Vision Computing. 1996(14):209-223.
  • 4D.KELLMEYER and H.ZWAHLEN. Detection of highway warning signs in natural video images using color image processing and neural networks. In IEEE Proc.lnt. Conf.Neural Networks 1994,7:4226-4231.
  • 5WEN-JIA KUO CHIEN-CHUNG LIN,Two-stage road sign detection and recognition ,IEEE International Conference on Multimedia and Expo, 2-5 July 2007.
  • 6H.FLEYEH, S.O. GILANI, and M. DOUGHERTY,Road sign detection and recognition using fuzzy artmap : a case study swedish speed-limit signs,Artificial Intelligence and Soft computing 2006.
  • 7X.W. GAO,L. PODLADCHIKOVA, D. SHAPOSHNIKOV, K. hong , N. shevtsova , Recognition of traffic signs based on their colour and shape features extracted using human vision models, Journal of visual communication & Image Representation.
  • 8FREUND Y,SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [A]. Computational Learning Theory: Eurocoh'95, 1995, Barcelona Spain [C]. Germany: Springer-Verlag, 1995.
  • 9VIOLA P,JONES M. Robust real time object detection[c]. Proc. Of IEEE Workshop on Statistical and Gomputational Theories of Vision,2001.
  • 10RAINER LIENHART. An extended set of haar-like features for rapid obiect detection. IEEE ICIP 2002.

共引文献54

同被引文献6

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部