期刊文献+

结合人脸表情和变形技术的人脸卡通动画系统设计与实现 被引量:3

Design and implementation of human face cartoon animation system combining face expressions and deformation technology
下载PDF
导出
摘要 针对实时生成人脸卡通动画的需求,设计和实现一种结合人脸表情与变形技术的人脸卡通动画系统。该系统包括人脸检测、特征点定位、人脸表情生成和人脸变形4个部分,首先,使用Haar特征和级联AdaBoost分类器检测人脸,并使用主动形状模型定位人脸特征点;然后,根据人脸特征和已有的卡通素材器官合成与真实人脸所对应的卡通人脸,并合成动态表情;最后,使用图像变形技术对人脸进行夸张变形处理,生成具有幽默、夸张效果的人脸图像。基于Matlab的实现效果表明,该系统能实时、高效地处理真实人脸图像。 In allusion to the real-time generation demand of human face cartoon animation,a human face cartoon animation system combining face expressions and deformation technology is designed and implemented. The system includes four parts of face detection,feature point location,face expression generation,and face deformation. The Haar feature and concatenated Ada Boost classifier are used to detect faces,and the active shape model is used to locate face feature points. The cartoon face corresponding to the real face is synthesized according to the face features and the existing cartoon material organs,and the dynamic expressions are synthesized. The image deformation technology is used to exaggerate and distort faces to generate humorous and exaggerated face images. The realization effect based on Matlab shows that the system can process real face images in real time and with high efficiency.
作者 伍菲 WU Fei(School of Information Science and Technology, Guilin University of Electronic Technology, Guilin 541004, China)
出处 《现代电子技术》 北大核心 2018年第12期56-58,62,共4页 Modern Electronics Technique
基金 2017年度广西高校中青年教师基础能力提升项目(2017KY1341)~~
关键词 卡通人脸 图像处理 人脸表情 图像变形 人脸检测 ADABOOST cartoon face image processing face expression image deformation face detection AdaBoost
  • 相关文献

参考文献4

二级参考文献42

  • 1宋伟,赵清杰,宋红,樊茜.基于关键块空间分布与Gabor滤波的人脸表情识别算法[J].中南大学学报(自然科学版),2013,44(S2):239-243. 被引量:7
  • 2阎芳,费广正,柳婷婷,马文慧,石民勇.漫画风格的人脸肖像生成算法[J].计算机辅助设计与图形学学报,2007,19(4):442-447. 被引量:8
  • 3邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,12(2):322-329. 被引量:36
  • 4WAGNER A, WRIGHT J, GANESH A, et al. Toward a practi-cal face recognition system : Robust alignment and illuminationby sparse representation [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2012, 34(2): 372-386.
  • 5HE R, ZHENG W S,HU B G. Maximum correntropy criterionfor robust face recognition [J], IEEE Transactions on PatternAnalysis and Machine Intelligence, 2011, 33(8) : 1561-1576.
  • 6LIAO S, JAIN A K,LI S Z. Partial face recognition: Align-ment-free approach [J]. IEEE Transactions on Pattern Analysisand Machine, 2013,35(5): 1193-1205.
  • 7JOURNEE Michel, NESTEROV Yurii,SEPULCHRE Rodol-phe, et al. Generalized power method for sparse principal com-ponent analysis [J]. The Journal of Machine Learning Re-search, 2010, 11(3): 517-553.
  • 8CANDES E J, LI X, MA Y, et al. Robust principal compo-nent analysis. [J]. Journal of the Association for Computing Ma-chinery (JACM),2011,58(3); 66-89.
  • 9DING Xing-hao, HE Li-han, CARIN L. Bayesian robust princi-pal component analysis [J]. IEEE Transactions on Image Pro-cessing, 2011, 20(12): 3419-3430.
  • 10FAN Zi-zhu, XU Yong, ZHANG D. Local linear discriminantanalysis framework using sample neighbors [J]. IEEE Transac-tions on Neural Networks, 2011, 22(7) : 1119-1132.

共引文献30

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部