期刊文献+

一个奇异值不等式的推广

Generalization of a Singular Value Inequality
下载PDF
导出
摘要 借助酉不变范数和复合矩阵理论对Zou的不等式进行推广。 We attempt to generalize this inequality by using unitarily invariant norm and compound matrix.
作者 刘俊同 刘越 LIU Jun-tong;LIU Yue(School of Mathematics and Statistics,Fuyang Teachers College,Fuyang 236041,China;Funan County 5th Primary School,Funan 236000,China)
出处 《唐山师范学院学报》 2018年第3期5-7,共3页 Journal of Tangshan Normal University
基金 安徽省教学研究项目(2016jyxm0754) 阜阳师范学院自然科学研究项目(2016FSKJ20)
关键词 奇异值不等式 酉不变范数 复合矩阵 singular value inequality unitarily invariant norm compound matrix
  • 相关文献

参考文献2

二级参考文献11

  • 1Kittaneh F., Manasrah Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 2011,59:1031 1037.
  • 2Bhatia R., Davis C., More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl., 1993, 14: 132-136.
  • 3Kittaneh F., Manasrah Y., Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 2010, 361: 262-269.
  • 4He C. J., Zou L. M., Some inequalities involving unitarily invariant norms, Math. Inequal. Appl., In Press.
  • 5Bhatia R., Interpolating the arithmetic-geometric mean inequality and its operator version, Linear Algebra Appl., 2006, 413: 355-363.
  • 6Kittaneh F., Norm inequalities for fractional powers of positive operators, Lett. Math. Phys., 1993, 27: 279 285.
  • 7He C. J., Zou L. M., Qaisar S., On improved arithmetic-geometric mean and Heinz inequalities for matrices, J. Math. Inequal., In Press.
  • 8苏农,刘玲.关于排序不等式的一个简单证明[J].高等数学研究,2011,14(1):49-50. 被引量:3
  • 9任林源,张利军.矩阵的酉不变范数不等式[J].数学的实践与认识,2011,41(11):204-208. 被引量:2
  • 10邹黎敏.矩阵的几个不等式[J].数学学报(中文版),2012,55(4):715-720. 被引量:7

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部