期刊文献+

基于特征值极限分布理论的盲多天线频谱感知算法 被引量:1

A Blind Multiple Antenna Spectrum Sensing Algorithm Based on the Limiting Distribution Theory of Eigenvalues
下载PDF
导出
摘要 当信道空闲时接收信号取样协方差矩阵的特征值在数值上均近似等于噪声方差,而主用户信号的出现则改变了这些特征值的大小。基于这一事实,提出一种基于取样协方差矩阵特征值的频谱感知算法。该算法以取样协方差矩阵的最大特征值与其他特征值的和之比作为感知判决量。基于大维随机矩阵理论的特征值极限分布理论,分析了算法的理论虚警性能,在此基础上提出了理论判决门限的计算方法。新算法在感知判决过程中无需事先知道噪声方差、主用户信号和信道增益等先验信息。因而,新算法属于一种全盲多天线频谱感知算法,具有广泛的适用范围。进一步的数值仿真结果验证了新方法的有效性。 The eigenvalues of the sampling covariance matrix of the received signal approximately equal to the noise variance when the channel is idle,while the presence of the primary user signal changes the values of these eigenvalues. Based on this fact,an eigenvalue based multiple antenna spectrum sensing algorithm is proposed. The proposed algorithm takes the ratio of the maximum eigenvalue of the sample covariance matrix to the sum of other eigenvalues as the test statistic. By utilizing the limiting distribution theory of eigenvalues of the large dimensional random matrix,the probability of false-alarm and the decision threshold are theoretically analyzed. The proposed algorithm does not need to know the prior information of noise variance,primary user signal and channel gain in advance. Therefore,the new algorithm is a fully blind multiantenna spectrum sensing algorithm,which has wide application scope. Further numerical simulation results verify the effectiveness of the new method.
作者 倪真 胡力 刘耀峰 王向明 雷可君 NI Zhen;HU Li;LIU Yaofeng;WANG Xiangming;LEI Kejun(Shanxi Microsoft Innovation Center Co., Ltd ,Xi'an 712000, China;College of Information Science and Engineering, Jishou Jishou Hu'nan 416000, China;Shanghai Stock Exchange Technology Co., Ltd, Shanghai 200120, China;School of Electrical and Information Engineering, Changsha 410082, China)
出处 《电子器件》 CAS 北大核心 2018年第3期593-598,共6页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(61362018 61102089) 湖南省教育厅重点科研项目(16A174) 吉首大学博士人才引进项目(JSDX2014)
关键词 认知无线电 盲频谱感知 取样协方差矩阵 特征值 极限分布理论 cognitive radio blind spectrum sensing sample covariance matrix eigenvalues limiting distribution theocy
  • 相关文献

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部