期刊文献+

结合暗通道先验的单幅图像快速去雾算法 被引量:6

A Fast Single Image Dehazing Algorithm Based on Dark Channel Prior
下载PDF
导出
摘要 基于暗通道先验的单幅图像去雾算法对天空区域的恢复效果不佳,且运行效率较低.为此,文中提出了一种快速、有效的单幅图像去雾算法.该算法首先根据颜色衰减先验建立场景深度模型,并基于场景深度模型估计透射率,再基于局部一致性和暗通道先验得到粗透射率;然后利用图像融合的方法,将基于场景深度模型估计的透射率与粗透射率融合,实现天空区域透射率的修正;最后采用导向滤波细化的透射率复原图像,并对复原图像进行色调调整.实验结果表明,文中算法运行效率高,并且有效地提高了复原图像的清晰度和对比度. A fast and effective single image dehazing algorithm is proposed in this paper because of the low efficiency and the poor result in the sky region on the basis of the dark channel prior. Firstly,according to the color attenuation prior,the scene depth model is established to estimate the transmittance. Then,the rough transmittance is obtained on basis of local consistency and the dark channel prior. After that,the rough transmittance and the transmittance estimated by the scene depth model are fused to correct the transmittance of the sky region. Finally,the image is restored by means of the transmittance refined by guided filter,and the tone mapping is applied to the restored image. Experiments show that the proposed algorithm has high efficiency,which can also effectively improve the visibility and contrast of the restored image.
作者 刘杰平 杨业长 韦岗 LIU Jieping;YANG Yezhang;WEI Gang(School of Electronic and Information Engineering% South China University of Technology, Guangzhou 510640,Guangdong, China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第3期86-91,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61471173) 广东省短距离无线探测与通信重点实验室项目(2014B030301010) 广州市科技计划项目(201707010070)~~
关键词 图像恢复 图像去雾 大气散射模型 暗通道先验 图像融合 image restoration image dehazing atmospheric scattering model dark channel prior image fusion
  • 相关文献

参考文献5

二级参考文献32

  • 1He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Florida, America: IEEE, 2009:1956-1963.
  • 2Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. South Carolina, America: IEEE, 2000: 598-605.
  • 3Nayar S K, Narasimhan S G. Vision in bad weather[C]//Proceedings of IEEE International Conference on Computer Vision. Kerkira, Greece: IEEE, 1999: 820-825.
  • 4Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hawaiian Islands, America: IEEE, 2001:325-330.
  • 5Shwartz S, Namer E, Schechner Y Y. Blind haze separateion[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, America: IEEE, 2006: 1984-1991.
  • 6Kopf J, Neubert B, Chen B, et al. Deep photo: model-based photograph enhancement and viewing[C]//Proceedings of ACM SIGGRAPH Asia. Suntec City: ACM, 2008:1-10.
  • 7Tan R. Visibility in bad weather from a single image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Alaska, America: IEEE, 2008:2201-2208.
  • 8Tarel J P. Fast visibility restoration from a single color or gray level image[C]//Proceedings of IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 2012-2208.
  • 9Wang G, Ren G, Jiang L. Single image dehazing algorithm based on sky region segmentation[J]. Journal of Information Technology, 2013, 12(6):1168-1175.
  • 10He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409.

共引文献96

同被引文献29

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部