摘要
The influence of tetracycline(TC) antibiotics on phosphine(PH3) production in the anaerobic wastewater treatment was studied. A lab-scale anaerobic baffled reactor with three compartments was employed to simulate this process. The reactor was operated in a TC-absence wastewater and 250 μg/L TC-presence wastewater for three months after a start-up period,respectively. The responses of p H, oxidation–reduction potential(ORP), chemical oxygen demand(COD), total phosphorus(TP), enzymes activity(dehydrogenase and acid phosphatase),and microbial community were investigated to reveal the effect of TC on PH3 production.Results suggested that the dehydrogenase(DH) activity, acid phosphatase(ACP) activity and COD have positive relationship with PH3 production, while p H, ORP level and the TP in liquid phase have negative relationship with PH3 production. With prolonged TC exposure, decrease in p H and increase in DH activity are beneficial to PH3 production, while decrease in COD and ACP activity are not the limiting factors for PH3 production.
The influence of tetracycline(TC) antibiotics on phosphine(PH3) production in the anaerobic wastewater treatment was studied. A lab-scale anaerobic baffled reactor with three compartments was employed to simulate this process. The reactor was operated in a TC-absence wastewater and 250 μg/L TC-presence wastewater for three months after a start-up period,respectively. The responses of p H, oxidation–reduction potential(ORP), chemical oxygen demand(COD), total phosphorus(TP), enzymes activity(dehydrogenase and acid phosphatase),and microbial community were investigated to reveal the effect of TC on PH3 production.Results suggested that the dehydrogenase(DH) activity, acid phosphatase(ACP) activity and COD have positive relationship with PH3 production, while p H, ORP level and the TP in liquid phase have negative relationship with PH3 production. With prolonged TC exposure, decrease in p H and increase in DH activity are beneficial to PH3 production, while decrease in COD and ACP activity are not the limiting factors for PH3 production.
基金
supported by the State Key Laboratory of Pollution Control and Resource Reuse(No.PCRRF14006)
the State Key Laboratory of Lake Science and Environment(No.2016SKL011)
the Student Research Project of South China University of Technology(2016)
the Shenzhen Municipal Science and Technology Innovation Committee through project Shenzhen Key Laboratory of Soil and Groundwater Pollution Control(No.ZDSY20150831141712549)