期刊文献+

POSS功能化镧系稀土配合物杂化材料的制备与表征 被引量:2

Synthesis and Characteration of POSS Functionalized Lanthanide Rear Earth Complexes Hybrid Material
下载PDF
导出
摘要 选用三羟基多面体低聚倍半硅氧烷(POSS-OH)为基质,三乙氧基硅基丙基异氰酸酯(TEPIC)为偶联剂,通过化学键合的方法将POSS与β-二酮类有机配体乙酰丙酮相结合,再以配位的形式引入稀土铽离子,制备了一种新型POSS功能化的稀土有机-无机杂化材料Tb(POSSACAC)_3。利用红外光谱和紫外光谱确定了Tb(POSS-ACAC)_3的结构,并通过与稀土小分子配合物Tb(ACAC)_3的热重分析对比发现,POSS基团的引入能够提高材料的热稳定性。进一步对材料的荧光性能进行分析,结果表明,Tb(POSS-ACAC)_3的发光纯度和荧光强度较纯配合物都有明显提高,同时解决了荧光淬灭问题。 POSS functionalized rare-earth organic-inorganic hybrid material Tb(POSS-ACAC)3 was prepared by linking the Tb^(3+)complexes to the functionalized hydroxy polyhedral oligomeric silsesquioxane(POSS-OH)with the triethoxysilyl propyl isocyanate(TEPIC)as coupling agent through the process of chemical bonding between POSS and theβ-diketone ligand ACAC.The structure of Tb(POSS-ACAC)3 was well characterized by IR and UV spectra.Compared with pure Tb(ACAC)3 complexes,it was showed that the introduction of POSS group could improve the thermal stability of the material.Furthermore,the luminescence properties of the resulting material was characterized in detail,and the results revealed that the luminescence intensity and purity of Tb(POSS-ACAC)3 were significantly improved.In addition,the problem of fluorescence quenching was solved.
作者 胡皓 李颖 HUHao;LIYing(School of Materials Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093, Chin)
出处 《有色金属材料与工程》 CAS 2018年第2期23-27,共5页 Nonferrous Metal Materials and Engineering
基金 国家自然科学基金资助项目(21101107 51373100 51173107 5140030478)
关键词 乙酰丙酮功能化POSS 稀土荧光 有机-无机杂化材料 ACAC functionalized POSS rear-earth luminescence organic-inorganic hybrid material
  • 相关文献

参考文献3

二级参考文献115

  • 1[1]SOO Y L, MING Z H, BHARGAVA R N, et al. Local structure around Mn luminescent c enters in Mn-doped nanocrystals of ZnS [J]. Phys. Rev. B, 1994, 50: 7602-7 607.
  • 2[2]COUNIO G, ESNOUF S, GACOIN T, et al. CdS:Mn Nanocrystals in transparen t xerogel matrices: synthesis and luminescence properties[J]. J. Phys. Chem., 1996, 100: 20021-20026.
  • 3[3]ALBE V, JOUANIN C, BERTHO D. Electronic structure of Mn-doped ZnS nan ocrystals [J]. Phys. Rev. B, 1998, 57: 8778-8781.
  • 4[4]CHAMARRO M A, VOLIOTIS V, GROUSSON R, et al. Optical properties of Mn -doped CdS nanocrystals [J]. J. Cryst. Growth, 1996, 159: 853-856.
  • 5[5]BOL A A, MEIJERINK A. Long-lived Mn2+ emission in nanocryst alline ZnS:Mn2+ [J]. Phys. Rev. B, 1998, 58: R15997-R16000.
  • 6[6]SOOKLAL K, CULLUM B S, ANGEL S M, et al. Photophysical properties of Z nS nanoclusters with spatially localized Mn2+ [J]. J. Phys. Chem., 1996 , 100: 4551-4555.
  • 7Pogue B, Jiang S D, Dehghani H. Alternative Breast Imaging. Chapter 10. Boston: Springer, 2005. 201-226.
  • 8Wu S, Han G, Milliron D J, Aloni S, Ahoe V, Talapin D V, Cohen B E, Schuck P J. Proc. Nat. Acad. Sci. USA, 2009, 106 : 10917-10921.
  • 9Bunzli J C G. Chem. Rev. , 2010, 110:2729-2755.
  • 10Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res. , 2009, 42:542-552.

共引文献33

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部